c@116
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@116
|
2 /*
|
c@116
|
3 Constant-Q library
|
c@116
|
4 Copyright (c) 2013-2014 Queen Mary, University of London
|
c@116
|
5
|
c@116
|
6 Permission is hereby granted, free of charge, to any person
|
c@116
|
7 obtaining a copy of this software and associated documentation
|
c@116
|
8 files (the "Software"), to deal in the Software without
|
c@116
|
9 restriction, including without limitation the rights to use, copy,
|
c@116
|
10 modify, merge, publish, distribute, sublicense, and/or sell copies
|
c@116
|
11 of the Software, and to permit persons to whom the Software is
|
c@116
|
12 furnished to do so, subject to the following conditions:
|
c@116
|
13
|
c@116
|
14 The above copyright notice and this permission notice shall be
|
c@116
|
15 included in all copies or substantial portions of the Software.
|
c@116
|
16
|
c@116
|
17 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
c@116
|
18 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
c@116
|
19 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
c@116
|
20 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
c@116
|
21 CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
|
c@116
|
22 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
c@116
|
23 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
c@116
|
24
|
c@116
|
25 Except as contained in this notice, the names of the Centre for
|
c@116
|
26 Digital Music; Queen Mary, University of London; and Chris Cannam
|
c@116
|
27 shall not be used in advertising or otherwise to promote the sale,
|
c@116
|
28 use or other dealings in this Software without prior written
|
c@116
|
29 authorization.
|
c@116
|
30 */
|
c@116
|
31
|
c@116
|
32 #include "CQKernel.h"
|
c@116
|
33
|
c@116
|
34 #include "maths/MathUtilities.h"
|
c@116
|
35 #include "dsp/transforms/FFT.h"
|
c@116
|
36 #include "base/Window.h"
|
c@116
|
37
|
c@116
|
38 #include <cmath>
|
c@116
|
39 #include <cassert>
|
c@116
|
40 #include <vector>
|
c@116
|
41 #include <iostream>
|
c@116
|
42 #include <algorithm>
|
c@116
|
43
|
c@116
|
44 using std::vector;
|
c@116
|
45 using std::complex;
|
c@116
|
46 using std::cerr;
|
c@116
|
47 using std::endl;
|
c@116
|
48
|
c@116
|
49 typedef std::complex<double> C;
|
c@116
|
50
|
c@116
|
51 CQKernel::CQKernel(double sampleRate, double maxFreq, int binsPerOctave) :
|
c@116
|
52 m_fft(0)
|
c@116
|
53 {
|
c@116
|
54 m_p.sampleRate = sampleRate;
|
c@116
|
55 m_p.maxFrequency = maxFreq;
|
c@116
|
56 m_p.binsPerOctave = binsPerOctave;
|
c@116
|
57 generateKernel();
|
c@116
|
58 }
|
c@116
|
59
|
c@116
|
60 CQKernel::~CQKernel()
|
c@116
|
61 {
|
c@116
|
62 delete m_fft;
|
c@116
|
63 }
|
c@116
|
64
|
c@116
|
65 void
|
c@116
|
66 CQKernel::generateKernel()
|
c@116
|
67 {
|
c@116
|
68 double q = 1;
|
c@116
|
69 double atomHopFactor = 0.25;
|
c@116
|
70 double thresh = 0.0005;
|
c@116
|
71
|
c@116
|
72 double bpo = m_p.binsPerOctave;
|
c@116
|
73
|
c@116
|
74 m_p.minFrequency = (m_p.maxFrequency / 2) * pow(2, 1.0/bpo);
|
c@116
|
75 m_p.Q = q / (pow(2, 1.0/bpo) - 1.0);
|
c@116
|
76
|
c@116
|
77 double maxNK = round(m_p.Q * m_p.sampleRate / m_p.minFrequency);
|
c@116
|
78 double minNK = round
|
c@116
|
79 (m_p.Q * m_p.sampleRate /
|
c@116
|
80 (m_p.minFrequency * pow(2, (bpo - 1.0) / bpo)));
|
c@116
|
81
|
c@116
|
82 if (minNK == 0 || maxNK == 0) {
|
c@116
|
83 // most likely pathological parameters of some sort
|
c@116
|
84 cerr << "WARNING: CQKernel::generateKernel: minNK or maxNK is zero (minNK == " << minNK << ", maxNK == " << maxNK << "), not generating a kernel" << endl;
|
c@116
|
85 m_p.atomSpacing = 0;
|
c@116
|
86 m_p.firstCentre = 0;
|
c@116
|
87 m_p.fftSize = 0;
|
c@116
|
88 m_p.atomsPerFrame = 0;
|
c@116
|
89 m_p.lastCentre = 0;
|
c@116
|
90 m_p.fftHop = 0;
|
c@116
|
91 return;
|
c@116
|
92 }
|
c@116
|
93
|
c@116
|
94 m_p.atomSpacing = round(minNK * atomHopFactor);
|
c@116
|
95 m_p.firstCentre = m_p.atomSpacing * ceil(ceil(maxNK / 2.0) / m_p.atomSpacing);
|
c@116
|
96 m_p.fftSize = MathUtilities::nextPowerOfTwo
|
c@116
|
97 (m_p.firstCentre + ceil(maxNK / 2.0));
|
c@116
|
98
|
c@116
|
99 m_p.atomsPerFrame = floor
|
c@116
|
100 (1.0 + (m_p.fftSize - ceil(maxNK / 2.0) - m_p.firstCentre) / m_p.atomSpacing);
|
c@116
|
101
|
c@116
|
102 cerr << "atomsPerFrame = " << m_p.atomsPerFrame << " (atomHopFactor = " << atomHopFactor << ", atomSpacing = " << m_p.atomSpacing << ", fftSize = " << m_p.fftSize << ", maxNK = " << maxNK << ", firstCentre = " << m_p.firstCentre << ")" << endl;
|
c@116
|
103
|
c@116
|
104 m_p.lastCentre = m_p.firstCentre + (m_p.atomsPerFrame - 1) * m_p.atomSpacing;
|
c@116
|
105
|
c@116
|
106 m_p.fftHop = (m_p.lastCentre + m_p.atomSpacing) - m_p.firstCentre;
|
c@116
|
107
|
c@116
|
108 cerr << "fftHop = " << m_p.fftHop << endl;
|
c@116
|
109
|
c@116
|
110 m_fft = new FFT(m_p.fftSize);
|
c@116
|
111
|
c@116
|
112 for (int k = 1; k <= m_p.binsPerOctave; ++k) {
|
c@116
|
113
|
c@116
|
114 int nk = round(m_p.Q * m_p.sampleRate /
|
c@116
|
115 (m_p.minFrequency * pow(2, ((k-1.0) / bpo))));
|
c@116
|
116
|
c@116
|
117 // The MATLAB version uses a symmetric window, but our windows
|
c@116
|
118 // are periodic. A symmetric window of size N is a periodic
|
c@116
|
119 // one of size N-1 with the first element stuck on the end
|
c@116
|
120 Window<double> w(BlackmanHarrisWindow, nk-1);
|
c@116
|
121 vector<double> win = w.getWindowData();
|
c@116
|
122 win.push_back(win[0]);
|
c@116
|
123
|
c@116
|
124 for (int i = 0; i < (int)win.size(); ++i) {
|
c@116
|
125 win[i] = sqrt(win[i]) / nk;
|
c@116
|
126 }
|
c@116
|
127
|
c@116
|
128 double fk = m_p.minFrequency * pow(2, ((k-1.0) / bpo));
|
c@116
|
129
|
c@116
|
130 vector<double> reals, imags;
|
c@116
|
131
|
c@116
|
132 for (int i = 0; i < nk; ++i) {
|
c@116
|
133 double arg = (2.0 * M_PI * fk * i) / m_p.sampleRate;
|
c@116
|
134 reals.push_back(win[i] * cos(arg));
|
c@116
|
135 imags.push_back(win[i] * sin(arg));
|
c@116
|
136 }
|
c@116
|
137
|
c@116
|
138 int atomOffset = m_p.firstCentre - int(ceil(nk/2.0));
|
c@116
|
139
|
c@116
|
140 for (int i = 0; i < m_p.atomsPerFrame; ++i) {
|
c@116
|
141
|
c@116
|
142 int shift = atomOffset + (i * m_p.atomSpacing);
|
c@116
|
143
|
c@116
|
144 vector<double> rin(m_p.fftSize, 0.0);
|
c@116
|
145 vector<double> iin(m_p.fftSize, 0.0);
|
c@116
|
146
|
c@116
|
147 for (int j = 0; j < nk; ++j) {
|
c@116
|
148 rin[j + shift] = reals[j];
|
c@116
|
149 iin[j + shift] = imags[j];
|
c@116
|
150 }
|
c@116
|
151
|
c@116
|
152 vector<double> rout(m_p.fftSize, 0.0);
|
c@116
|
153 vector<double> iout(m_p.fftSize, 0.0);
|
c@116
|
154
|
c@116
|
155 m_fft->process(false,
|
c@116
|
156 rin.data(), iin.data(),
|
c@116
|
157 rout.data(), iout.data());
|
c@116
|
158
|
c@116
|
159 // Keep this dense for the moment (until after
|
c@116
|
160 // normalisation calculations)
|
c@116
|
161
|
c@116
|
162 vector<C> row;
|
c@116
|
163
|
c@116
|
164 for (int j = 0; j < m_p.fftSize; ++j) {
|
c@116
|
165 if (sqrt(rout[j] * rout[j] + iout[j] * iout[j]) < thresh) {
|
c@116
|
166 row.push_back(C(0, 0));
|
c@116
|
167 } else {
|
c@116
|
168 row.push_back(C(rout[j] / m_p.fftSize,
|
c@116
|
169 iout[j] / m_p.fftSize));
|
c@116
|
170 }
|
c@116
|
171 }
|
c@116
|
172
|
c@116
|
173 m_kernel.origin.push_back(0);
|
c@116
|
174 m_kernel.data.push_back(row);
|
c@116
|
175 }
|
c@116
|
176 }
|
c@116
|
177
|
c@116
|
178 assert((int)m_kernel.data.size() == m_p.binsPerOctave * m_p.atomsPerFrame);
|
c@116
|
179
|
c@116
|
180 // print density as diagnostic
|
c@116
|
181
|
c@116
|
182 int nnz = 0;
|
c@116
|
183 for (int i = 0; i < (int)m_kernel.data.size(); ++i) {
|
c@116
|
184 for (int j = 0; j < (int)m_kernel.data[i].size(); ++j) {
|
c@116
|
185 if (m_kernel.data[i][j] != C(0, 0)) {
|
c@116
|
186 ++nnz;
|
c@116
|
187 }
|
c@116
|
188 }
|
c@116
|
189 }
|
c@116
|
190
|
c@116
|
191 cerr << "size = " << m_kernel.data.size() << "*" << m_kernel.data[0].size() << " (fft size = " << m_p.fftSize << ")" << endl;
|
c@116
|
192
|
c@116
|
193 assert((int)m_kernel.data.size() == m_p.binsPerOctave * m_p.atomsPerFrame);
|
c@116
|
194 assert((int)m_kernel.data[0].size() == m_p.fftSize);
|
c@116
|
195
|
c@116
|
196 cerr << "density = " << double(nnz) / double(m_p.binsPerOctave * m_p.atomsPerFrame * m_p.fftSize) << " (" << nnz << " of " << m_p.binsPerOctave * m_p.atomsPerFrame * m_p.fftSize << ")" << endl;
|
c@116
|
197
|
c@116
|
198 finaliseKernel();
|
c@116
|
199 }
|
c@116
|
200
|
c@116
|
201 static bool ccomparator(C &c1, C &c2)
|
c@116
|
202 {
|
c@116
|
203 return abs(c1) < abs(c2);
|
c@116
|
204 }
|
c@116
|
205
|
c@116
|
206 static int maxidx(vector<C> &v)
|
c@116
|
207 {
|
c@116
|
208 return std::max_element(v.begin(), v.end(), ccomparator) - v.begin();
|
c@116
|
209 }
|
c@116
|
210
|
c@116
|
211 void
|
c@116
|
212 CQKernel::finaliseKernel()
|
c@116
|
213 {
|
c@116
|
214 // calculate weight for normalisation
|
c@116
|
215
|
c@116
|
216 int wx1 = maxidx(m_kernel.data[0]);
|
c@116
|
217 int wx2 = maxidx(m_kernel.data[m_kernel.data.size()-1]);
|
c@116
|
218
|
c@116
|
219 vector<vector<C> > subset(m_kernel.data.size());
|
c@116
|
220 for (int j = wx1; j <= wx2; ++j) {
|
c@116
|
221 for (int i = 0; i < (int)m_kernel.data.size(); ++i) {
|
c@116
|
222 subset[i].push_back(m_kernel.data[i][j]);
|
c@116
|
223 }
|
c@116
|
224 }
|
c@116
|
225
|
c@116
|
226 int nrows = subset.size();
|
c@116
|
227 int ncols = subset[0].size();
|
c@116
|
228 vector<vector<C> > square(ncols); // conjugate transpose of subset * subset
|
c@116
|
229
|
c@116
|
230 for (int i = 0; i < nrows; ++i) {
|
c@116
|
231 assert((int)subset[i].size() == ncols);
|
c@116
|
232 }
|
c@116
|
233
|
c@116
|
234 for (int j = 0; j < ncols; ++j) {
|
c@116
|
235 for (int i = 0; i < ncols; ++i) {
|
c@116
|
236 C v(0, 0);
|
c@116
|
237 for (int k = 0; k < nrows; ++k) {
|
c@116
|
238 v += subset[k][i] * conj(subset[k][j]);
|
c@116
|
239 }
|
c@116
|
240 square[i].push_back(v);
|
c@116
|
241 }
|
c@116
|
242 }
|
c@116
|
243
|
c@116
|
244 vector<double> wK;
|
c@116
|
245 double q = 1; //!!! duplicated from constructor
|
c@116
|
246 for (int i = round(1.0/q); i < ncols - round(1.0/q) - 2; ++i) {
|
c@116
|
247 wK.push_back(abs(square[i][i]));
|
c@116
|
248 }
|
c@116
|
249
|
c@116
|
250 double weight = double(m_p.fftHop) / m_p.fftSize;
|
c@116
|
251 weight /= MathUtilities::mean(wK.data(), wK.size());
|
c@116
|
252 weight = sqrt(weight);
|
c@116
|
253
|
c@116
|
254 cerr << "weight = " << weight << endl;
|
c@116
|
255
|
c@116
|
256 // apply normalisation weight, make sparse, and store conjugate
|
c@116
|
257 // (we use the adjoint or conjugate transpose of the kernel matrix
|
c@116
|
258 // for the forward transform, the plain kernel for the inverse
|
c@116
|
259 // which we expect to be less common)
|
c@116
|
260
|
c@116
|
261 KernelMatrix sk;
|
c@116
|
262
|
c@116
|
263 for (int i = 0; i < (int)m_kernel.data.size(); ++i) {
|
c@116
|
264
|
c@116
|
265 sk.origin.push_back(0);
|
c@116
|
266 sk.data.push_back(vector<C>());
|
c@116
|
267
|
c@116
|
268 int lastNZ = 0;
|
c@116
|
269 for (int j = (int)m_kernel.data[i].size()-1; j >= 0; --j) {
|
c@116
|
270 if (abs(m_kernel.data[i][j]) != 0.0) {
|
c@116
|
271 lastNZ = j;
|
c@116
|
272 break;
|
c@116
|
273 }
|
c@116
|
274 }
|
c@116
|
275
|
c@116
|
276 bool haveNZ = false;
|
c@116
|
277 for (int j = 0; j <= lastNZ; ++j) {
|
c@116
|
278 if (haveNZ || abs(m_kernel.data[i][j]) != 0.0) {
|
c@116
|
279 if (!haveNZ) sk.origin[i] = j;
|
c@116
|
280 haveNZ = true;
|
c@116
|
281 sk.data[i].push_back(conj(m_kernel.data[i][j]) * weight);
|
c@116
|
282 }
|
c@116
|
283 }
|
c@116
|
284 }
|
c@116
|
285
|
c@116
|
286 m_kernel = sk;
|
c@116
|
287 }
|
c@116
|
288
|
c@116
|
289 vector<C>
|
c@116
|
290 CQKernel::processForward(const vector<C> &cv)
|
c@116
|
291 {
|
c@116
|
292 // straightforward matrix multiply (taking into account m_kernel's
|
c@116
|
293 // slightly-sparse representation)
|
c@116
|
294
|
c@116
|
295 if (m_kernel.data.empty()) return vector<C>();
|
c@116
|
296
|
c@116
|
297 int nrows = m_p.binsPerOctave * m_p.atomsPerFrame;
|
c@116
|
298
|
c@116
|
299 vector<C> rv(nrows, C());
|
c@116
|
300
|
c@116
|
301 for (int i = 0; i < nrows; ++i) {
|
c@116
|
302 int len = m_kernel.data[i].size();
|
c@116
|
303 for (int j = 0; j < len; ++j) {
|
c@116
|
304 rv[i] += cv[j + m_kernel.origin[i]] * m_kernel.data[i][j];
|
c@116
|
305 }
|
c@116
|
306 }
|
c@116
|
307
|
c@116
|
308 return rv;
|
c@116
|
309 }
|
c@116
|
310
|
c@116
|
311 vector<C>
|
c@116
|
312 CQKernel::processInverse(const vector<C> &cv)
|
c@116
|
313 {
|
c@116
|
314 // matrix multiply by conjugate transpose of m_kernel. This is
|
c@116
|
315 // actually the original kernel as calculated, we just stored the
|
c@116
|
316 // conjugate-transpose of the kernel because we expect to be doing
|
c@116
|
317 // more forward transforms than inverse ones.
|
c@116
|
318
|
c@116
|
319 if (m_kernel.data.empty()) return vector<C>();
|
c@116
|
320
|
c@116
|
321 int ncols = m_p.binsPerOctave * m_p.atomsPerFrame;
|
c@116
|
322 int nrows = m_p.fftSize;
|
c@116
|
323
|
c@116
|
324 vector<C> rv(nrows, C());
|
c@116
|
325
|
c@116
|
326 for (int j = 0; j < ncols; ++j) {
|
c@116
|
327 int i0 = m_kernel.origin[j];
|
c@116
|
328 int i1 = i0 + m_kernel.data[j].size();
|
c@116
|
329 for (int i = i0; i < i1; ++i) {
|
c@116
|
330 rv[i] += cv[j] * conj(m_kernel.data[j][i - i0]);
|
c@116
|
331 }
|
c@116
|
332 }
|
c@116
|
333
|
c@116
|
334 return rv;
|
c@116
|
335 }
|
c@116
|
336
|
c@116
|
337
|