Cognitive Music Modelling: an
Information Dynamics Approach

Samer A. Abdallah, Henrik Ekeus, Peter Foster
Andrew Robertson and Mark D. Plumbley
Centre for Digital Music
Queen Mary University of London
Mile End Road, London E1 4NS

Abstract—We describe an information-theoretic approach to
the analysis of music and other sequential data, which emphasises
the predictive aspects of perception, and the dynamic process of
forming and modifying expectations about an unfolding stream
of data, characterising these using the tools of information theory:
entropies, mutual informations, and related quantities. After
reviewing the theoretical foundations, we discuss a few emerging
areas of application, including musicological analysis, real-time
beat-tracking analysis, and the generation of musical materials
as a cognitively-informed compositional aid.

I. INTRODUCTION

The relationship between Shannon’s [1] information theory
and music and art in general has been the subject of some
interest since the 1950s [2]-[6]. The general thesis is that
perceptible qualities and subjective states like uncertainty,
surprise, complexity, tension, and interestingness are closely
related to information-theoretic quantities like entropy, relative
entropy, and mutual information.

Music is also an inherently dynamic process, where listeners
build up expectations about what is to happen next, which
may be fulfilled immediately, after some delay, or modified as
the music unfolds. In this paper, we explore this “Information
Dynamics” view of music, discussing the theory behind it and
some emerging applications.

A. Expectation and surprise in music

The idea that the musical experience is strongly shaped by the
generation and playing out of strong and weak expectations was
put forward by, amongst others, music theorists L. B. Meyer
[5] and Narmour [7], but was recognised much earlier; for
example, it was elegantly put by Hanslick [8] in the nineteenth
century:

‘The most important factor in the mental process
which accompanies the act of listening to music, and
which converts it to a source of pleasure, is ...the in-
tellectual satisfaction which the listener derives from
continually following and anticipating the composer’s
intentions—now, to see his expectations fulfilled, and
now, to find himself agreeably mistaken.

An essential aspect of this is that music is experienced as a
phenomenon that unfolds in time, rather than being apprehended
as a static object presented in its entirety. Meyer argued
that the experience depends on how we change and revise

our conceptions as events happen, on how expectation and
prediction interact with occurrence, and that, to a large degree,
the way to understand the effect of music is to focus on this
‘kinetics’ of expectation and surprise.

Prediction and expectation are essentially probabilistic con-
cepts and can be treated mathematically using probability theory.
We suppose that when we listen to music, expectations are
created on the basis of our familiarity with various styles of
music and our ability to detect and learn statistical regularities
in the music as they emerge, There is experimental evidence
that human listeners are able to internalise statistical knowledge
about musical structure, e.g. [9], and also that statistical models
can form an effective basis for computational analysis of music,
e.g. [10]-[12].

B. Information dynamic approach

Our working hypothesis is that, as an intelligent, predictive
agent (to which will refer as ‘it’) listens to a piece of music,
it maintains a dynamically evolving probabilistic belief state
that enables it to make predictions about how the piece will
continue, relying on both its previous experience of music and
the emerging themes of the piece. As events unfold, it revises
this belief state, which includes predictive distributions over
possible future events. These can be characterised in terms of a
handful of information theoretic-measures such as entropy and
relative entropy, what Berlyne [13] called ‘collative variables’,
since they are to do with patterns of occurrence, rather than
the details of which specific things occur, and developed the
ideas of ‘information aesthetics’ in an experimental setting.
By tracing the evolution of a these measures, we obtain a
representation which captures much of the significant structure
of the music.

One consequence of this approach is that regardless of the
details of the sensory input or even which sensory modality is
being processed, the resulting analysis is in terms of the same
units: quantities of information (bits) and rates of information
flow (bits per second). The information theoretic concepts in
terms of which the analysis is framed are universal to all sorts
of data. Together, these suggest that an information dynamic
analysis captures a high level of abstraction, and could be used
to make structural comparisons between different temporal
media, such as music, film, animation, and dance.



Another consequence is that the information dynamic ap-
proach gives us a principled way to address the notion of
subjectivity, since the analysis is dependent on the probability
model the observer starts off with, which may depend on
prior experience or other factors, and which may change over
time. Thus, inter-subject variablity and variation in subjects’
responses over time are fundamental to the theory.

II. THEORETICAL REVIEW
A. Entropy and information

Let X denote some variable whose value is initially unknown
to our hypothetical observer. We will treat X mathematically
as a random variable, with a value to be drawn from some set
X and a probability distribution representing the observer’s
beliefs about the true value of X. In this case, the observer’s
uncertainty about X can be quantified as the entropy of the
random variable H (X). For a discrete variable with probability
mass function p : X — [0, 1], this is

H(X) =" —p(x)logp(x),
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The negative-log-probability ¢(z) = — log p(x) of a particular
value x can usefully be thought of as the surprisingness of the
value x should it be observed, and hence the entropy is the
expectation of the surprisingness, E ¢(X).

Now suppose that the observer receives some new data D
that causes a revision of its beliefs about X. The information
in this new data about X can be quantified as the relative
entropy or Kullback-Leibler (KL) divergence between the prior
and posterior distributions p(x) and p(z|D) respectively:

Z p(z|D) log p(:v|D).

= p()

When there are multiple variables X;, Xo etc. which the
observer believes to be dependent, then the observation of
one may change its beliefs and hence yield information about
the others. The joint and conditional entropies as described in
any textbook on information theory (e.g. [14]) then quantify
the observer’s expected uncertainty about groups of variables
given the values of others. In particular, the mutual information
I(X1; X5) is both the expected information in an observation
of X, about X; and the expected reduction in uncertainty
about X after observing Xs:

Ipx = D(pxpllpx) = (2)

I(Xy1; Xp) = H(Xy) — H(X1|X2), 3)

where H(X;|X2) = H(X;,X3) — H(Xs) is the condi-
tional entropy of X; given Xs. A little algebra shows that
I(X1;X5) = I(X2;X;) and so the mutual information is
symmetric in its arguments. A conditional form of the mutual
information can be formulated analogously:

I(X1; X5|X3) = H(X1|X3) — H(X;| X2, X3). “)

These relationships between the various entropies and mu-
tual informations are conveniently visualised in information
diagrams or I-diagrams [15] such as the one in fig. 1.
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Fig. 1.  I-diagram of entropies and mutual informations for three
random variables X, Xo and X3. The areas of the three circles
represent H(X1), H(X2) and H(X3) respectively. The total shaded
area is the joint entropy H (X1, X2, X3). The central area [123 is the
co-information [16]. Some other information measures are indicated
in the legend.

B. Surprise and information in sequences

Suppose that (..., X 1, Xo, X1,...) is a sequence of random
variables, infinite in both directions, and that y is the associated
probability measure over all realisations of the sequence. In
the following, 1 will simply serve as a label for the process.
We can indentify a number of information-theoretic measures
meaningful in the context of a sequential observation of the
sequence, during which, at any time J the sequence can be
divided into a ‘gesent’ X, a‘past’ Xy = (..., X2, Xt—1),
and a ‘future’ Xy = (Xyp1, Xiao,...). We will write the
actually observed value of X; as z;, and the sequence of
observations up to but not including x; as T
The in-context surprisingness of the observation X; = x
depends on both z; and the context Et:
by = — logp(a:t\gt). (5)
However, before X, is observed, the observer can compute
the expected surprisingness as a measure of its uncertamty

about X;; this may be written as an entropy H (Xt|X = xt),
but note that this is conditional on the event X = xf, not the
variables X ¢+ as in the conventional conditional entropy.

The surpr1smgness f; and expected surprisingness

(Xt|X =) can be understood as subjective information
dynamic measures, since they are based on the observer’s
probabilit)L model in the context of the actually observed
sequence x;. They characterise what it is like to be ‘in the
observer’s shoes’. If we view the observer as a purely passive
or reactive agent, this would probably be sufficient, but for
active agents such as humans or animals, it is often necessary
to aniticipate future events in order, for example, to plan
the most effective course of action. It makes sense for such
observers to be concerned about the predictive probability
distribution over future events, p(:rt\ % ). When an observation
X;=ux; is made in this context, the instantaneous predictive
information (IPI) Z; at time ¢ is the information in the event
X;= xz; about the entlre future of the sequence X i, given

the observed past X = xt Referring to the definition of
information (2), this is the KL divergence between prior and
posterior distributions over possible futures, which written out
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Fig. 2. I-diagram illustrating several information measures in
stationary random processes. Each circle or oval represents a random
variable or sequence of random variables relative to time ¢t = 0.
Overlapped areas correspond to various mutual informations. The
circle represents the ‘present’. Its total area is H(Xo) = pp+7. + by,
where p,, is the multi-information rate, r,, is the residual entropy
rate, and b, is the predictive information rate. The entropy rate is
hy =10+ bu.

in full, is

It: Z p(?ﬂxt,;t)logp
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(6)

where the sum is to be taken over the set of infinite sequences
X*. Note that it is quite possible for an event to be surprising
but not informative in a predictive sense. As with the surpris-
ingness, the observer can compute its expected lPI at time

t, which reduces to a mutual information I(X;; X¢| X ;= }?t)
conditioned on the observed past. This could be used, for
example, as an estimate of attentional resources which should
be directed at this stream of data, which may be in competition
with other sensory streams.

C. Information measures for stationary random processes

If we step back, out of the observer’s shoes as it were, and
consider the random process (..., X_1,Xo,X3,...) as a
statistical ensemble of possible realisations, and furthermore
assume that it is stationary, then it becomes possible to define
a number of information-theoretic measures, closely related
to those described above, but which characterise the process
as a whole, rather than on a moment-by-moment basis. Some
of these, such as the entropy rate, are well-known, but others
are only recently being investigated. (In the following, the
assumption of stationarity means that the measures defined
below are independent of ¢.)

The entropy rate of the process is the entropy of the ‘present’
X, given the ‘past’:

hy = H(X,|X,). ™

The entropy rate is a measure of the overall surprisingness
or unpredictability of the process, and gives an indication of
the average level of surprise and uncertainty that would be
experienced by an observer computing the measures of §II-B
on a sequence sampled from the process.

The multi-information rate p,, [17] is the mutual information
between the ‘past’ and the ‘present’:

pp=1(X3; X)) = H(X,) — hy,. @®)

It is a measure of how much the preceeding context of an
observation helps in predicting or reducing the suprisingness
of the current observation.

The excess entropy [18] is the mutual information between
the entire ‘past’ and the entire ‘future’ plus ‘present’:

— —
B =I(Xy; X, Xo). )

Both the excess entropy and the multi-information rate can be
thought of as measures of redundancy, quantifying the extent
to which the same information is to be found in all parts of
the sequence.

The predictive information rate (or PIR) [19] is the mutual
information between the ‘present’ and the ‘future’ given the
‘past’:

— — — —
bu:](Xt;Xt|Xt):H(Xt|Xt)—H(Xt|Xt,Xt), (10)

which can be read as the average reduction in uncertainty about
the future on learning X, given the past. Due to the symmetry
of the mutual information, it can also be written as

Y

where r, = H(Xt|)_>(t, <)_(t), is the residual [20], or erasure
[21] entropy rate. The PIR gives an indication of the average
IPI that would be experienced by an observer processing a
sequence sampled from this process. The relationship between
these various measures are illustrated in Fig. 2; see James et
al [22] for further discussion.

— — =
bﬂ = H(Xt|Xt) — H(Xt‘Xt,Xt) = h# —Tu,

D. First and higher order Markov chains

In [19] we derived expressions for all the information measures
described in §1I-B for ergodic first order Markov chains (i.e.
that have a unique stationary distribution). We also showed that
the PIR can be expressed simply in terms of entropy rates: if we
let a denote the K x K transition matrix of a Markov chain over
an alphabet {1,..., K}, such that a;; = Pr(X,=1|X;_1=j),
and let h : REXK 5 R be the entropy rate function such
that h(a) is the entropy rate of a Markov chain with transition
matrix a, then the PIR is

b, = h(a*) — h(a), (12)

where a? is the transition matrix of the Markov chain obtained
by jumping two steps at a time along the original chain.

Second and higher order Markov chains can be treated in
a similar way by transforming to a first order representation
of the high order Markov chain. With an Nth order model,
this is done by forming a new alphabet of size K consisting
of all possible N-tuples of symbols from the base alphabet.
An observation z; in this new model encodes a block of N
observations (441, ...,%s+n) from the base model. The new
Markov of chain is parameterised by a sparse K~ x KV
transition matrix a, in terms of which the PIR is

hy=h(a),  b,=h@"*") - Nh(a),  (13)

where @V 11 is the (IV + 1)th power of the first order transition
matrix. Other information measures can also be computed for
the high-order Markov chain, including the multi-information
rate p,, and the excess entropy E. (These are identical for first



order Markov chains, but for order N chains, F can be up to
N times larger than p,,.)

In our experiments with visualising and sonifying sequences
sampled from first order Markov chains [19], we found that the
measures h,, p, and b, correspond to perceptible characteris-
tics, and that the transition matrices maximising or minimising
each of these quantities are quite distinct. High entropy rates
are associated with completely uncorrelated sequences with
no recognisable temporal structure (and low p,, and b,). High
values of p,, are associated with long periodic cycles (and low
h,, and b,). High values of b,, are associated with intermediate
values of p, and h,, and recognisable, but not completely
predictable, temporal structures. These relationships are visible
in fig. 7 in § I'V, where we pick up this thread again, with an
application of information dynamics in a compositional aid.

IIT. INFORMATION DYNAMICS IN ANALYSIS

A. Musicological Analysis

In [19], we analysed two pieces of music in the minimalist style
by Philip Glass: Two Pages (1969) and Gradus (1968). The
analysis was done using a first-order Markov chain model, with
the enhancement that the transition matrix of the model was
allowed to evolve dynamically as the notes were processed, and
was tracked (in a Bayesian way) as a distribution over possible
transition matrices, rather than a point estimate. Some results are
summarised in fig. 3: the upper four plots show the dynamically
evolving subjective information measures as described in §II-B,
computed using a point estimate of the current transition
matrix; the fifth plot (the ‘model information rate’) shows
the information in each observation about the transition matrix.
In [23], we showed that this ‘model information rate’ is actually
a component of the true IPI when the transition matrix is being
learned online, and was neglected when we computed the IPI
from the transition matrix as if it were a constant.

The peaks of the surprisingness and both components of
the IPI show good correspondence with structure of the piece
both as marked in the score and as analysed by musicologist
Keith Potter, who was asked to mark the six ‘most surprising
moments’ of the piece (shown as asterisks in the fifth plot). In
contrast, the analyses shown in the lower two plots of fig. 3,
obtained using two rule-based music segmentation algorithms,
while clearly reflecting the structure of the piece, do not segment
the piece, with no tendency to peaking of the boundary strength
function at the boundaries in the piece.

The complete analysis of Gradus can be found in [19], but
fig. 4 illustrates the result of a metrical analysis: the piece was
divided into bars of 32, 64 and 128 notes. In each case, the
average surprisingness and IPI for the first, second, third etc.
notes in each bar were computed. The plots show that the first
note of each bar is, on average, significantly more surprising
and informative than the others, up to the 64-note level, where
as at the 128-note, level, the dominant periodicity appears to
remain at 64 notes.
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Fig. 3. Analysis of Two Pages. The thick vertical lines are the part
boundaries as indicated in the score by the composer. The thin grey
lines indicate changes in the melodic ‘figures’ of which the piece is
constructed. In the ‘model information rate’ panel, the black asterisks
mark the six most surprising moments selected by Keith Potter. The
bottom two panels show two rule-based boundary strength analyses.
All information measures are in nats. [24].

average surprisingness over 32 beat metre average predictive information, 32 beat metre

5 10 15 20 25 30 5 10 15 20 25 30

average surprisingness over 64 beat metre average predictive information, 64 beat metre

25 0.3
2 0.25
0.2

0.15

0.1

10 20 30 40 50 60 ’ 10 20 30 40 50 60

average surprisingness over 128 beat metre average predictive information, 128 beat metre

0.3
0.25
0.2
0.15

0.1
20 40 60 80 100 120 20 40 60 80 100 120

Fig. 4. Metrical analysis by computing average surprisingness and
IPI of notes at different periodicities (i.e. hypothetical bar lengths)
and phases (i.e. positions within a bar).
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Information dynamic analysis derived from audio recordings of drumming, obtained by applying a Bayesian beat tracking system to

the sequence of detected kick and snare drum events. The grey line show the system’s varying level of uncertainty (entropy) about the tempo
and phase of the beat grid, while the stem plot shows the amount of information in each drum event about the beat grid. The entropy drops

instantaneously at each event and rises gradually between events.

B. Real-valued signals and audio analysis

Using analogous definitions based on the differential entropy
[14], the methods outlined in § II-B and § II-C can be reformu-
lated for random variables taking values in a continuous domain
and thus be applied to expressive parameters of music such as
dynamics, timing and timbre, which are readily quantified on a
continuous scale. Dubnov [17] considers the class of stationary
Gaussian processes, for which the entropy rate may be obtained
analytically from the power spectral density function S(w) of
the signal, and found that the multi-information rate can be
expressed as

1 1 [7 I
Pu=75 <log %L S(w) dw — %/ log S(w) dw) .
” - (14)

Dubnov also notes that e~2°+ is equivalent to the well-known
spectral flatness measure, and hence, Gaussian processes with
maximal multi-information rate are those with maximally non-
flat spectra, which are those dominated by a single frequency
component.

We have found (to appear in forthcoming work) that the
predictive information for autoregressive Gaussian processes

can be expressed as
b, = /F lo 1 dw
" W) )
15)

1 1 /M™ 1 1
— | log — —— dw — —
2 < 27 [ = S(w) 27
suggesting a sort of duality between b, and p, which is
consistent with the duality between multi-information and
predictive information rates we discuss in [25]. A consideration
of the residual or erasure entropy rate [21] suggests that this
expression applies to Guassian processes in general but this is
yet to be confirmed rigorously.

Analysis shows that in stationary autogressive processes of a
given finite order, p,, is unbounded, while for moving average
process of a given order, b, is unbounded. This is a result
of the physically unattainable infinite precision observations
which the theoretical analysis assumes; adding more realistic
limitations on the amount of information that can be extracted
from one measurement is the one of the aims of our ongoing
work in this area.

C. Beat Tracking

A probabilistic method for drum tracking was presented by
Robertson [26]. The system infers a beat grid (a sequence of
approximately regular beat times) given audio inputs from a live
drummer, for the purpose of synchronising a music sequencer
with the drummer. The times of kick and snare drum events
are obtained using dedicated microphones for each drum and
a percussive onset detector [27]. These event times are then
sent to the beat tracker, which maintains a belief state in the
form of distributions over the tempo and phase of the beat grid.
Every time an event is received, these distributions are updated
with respect to a probabilistic model which accounts both for
tempo and phase variations and the emission of drum events
at musically plausible times relative to the beat grid.

The use of a probabilistic belief state means we can compute
entropies representing the system’s uncertainty about the beat
grid, and quantify the amount of information in each event
about the beat grid as the KL divergence between prior
and posterior distributions. Though this is not strictly the
instantaneous predictive information (IPI) as described in §II-B
(the information gained is not directly about future event times),
we can treat it as a proxy for the IPL, in the manner of the ‘model
information rate’ described in § ITI-A, which has a similar status.

We carried out the analysis on 16 recordings; an example is
shown in fig. 5. There we can see variations in the entropy in the
upper graph and the information in each drum event in the lower
stem plot. At certain points in time, unusually large amounts
of information arrive; these may be related to fills and other
rhythmic irregularities, which are often followed by an emphatic
return to a steady beat at the beginning of the next bar—this
is something we are currently investigating. We also analysed
the pattern of information flow on a cyclic metre, much as in
fig. 4. All the recordings we analysed are audibly in 4/4 metre,
but we found no evidence of a general tendency for greater
amounts of information to arrive at metrically strong beats,
which suggests that the rhythmic accuracy of the drummers
does not vary systematically across each bar. It is possible that
metrical information existing in the pattern of kick and snare
events might emerge in an analysis using a model that attempts
to predict the time and type of the next drum event, rather than
just inferring the beat grid as the current model does.



IV. INFORMATION DYNAMICS AS COMPOSITIONAL AID

The use of stochastic processes in music composition has been
widespread for decades—for instance lannis Xenakis applied
probabilistic mathematical models to the creation of musical
materials [28]. While such processes can drive the generative
phase of the creative process, information dynamics can serve
as a novel framework for a selective phase, by providing a set of
criteria to be used in judging which of the generated materials
are of value. This alternation of generative and selective phases
as been noted before [29]. Information-dynamic criteria can also
be used as constraints on the generative processes, for example,
by specifying a certain temporal profile of suprisingness and
uncertainty the composer wishes to induce in the listener as
the piece unfolds.

In particular, the behaviour of the predictive information rate
(PIR) defined in § II-C make it interesting from a compositional
point of view. The definition of the PIR is such that it is
low both for extremely regular processes, such as constant or
periodic sequences, and low for extremely random processes,
where each symbol is chosen independently of the others, in
a kind of ‘white noise’. In the former case, the pattern, once
established, is completely predictable and therefore there is
no new information in subsequent observations. In the latter
case, the randomness and independence of all elements of
the sequence means that, though potentially surprising, each
observation carries no information about the ones to come.

Processes with high PIR maintain a certain kind of balance
between predictability and unpredictability in such a way
that the observer must continually pay attention to each new
observation as it occurs in order to make the best possible
predictions about the evolution of the seqeunce. This balance
between predictability and unpredictability is reminiscent of
the inverted ‘U’ shape of the Wundt curve (see fig. 6), which
summarises the observations of Wundt [30] that stimuli are
most pleasing at intermediate levels of novelty or disorder,
where there is a balance between ‘order’ and ‘chaos’.

Using the methods of §II-D, we found [19] a similar shape
when plotting entropy rate againt PIR—this is visible in the
upper envelope of the plot in fig. 7, which is a 3-D scatter plot
of three of the information measures discussed in §II-C for
several thousand first-order Markov chain transition matrices
generated by a random sampling method. The coordinates
of the ‘information space’ are entropy rate (h,,), redundancy
(pu), and predictive information rate (b,). The points along
the ‘redundancy’ axis correspond to periodic Markov chains.
Those along the ‘entropy’ axis produce uncorrelated sequences
with no temporal structure. Processes with high PIR are to be
found at intermediate levels of entropy and redundancy.

A. The Melody Triangle

These observations led us to construct the ‘Melody Triangle’,
a graphical interface for the discovery of melodic materials,
where the input—positions within a triangle—directly map to
information theoretic properties of the output. The triangle is
populated with first order Markov chain transition matrices as
illustrated in fig. 7. The distribution of transition matrices in
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Fig. 6. The Wundt curve relating randomness/complexity with
perceived value. Repeated exposure sometimes results in a move to
the left along the curve [13].

pred-info rate
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Fig. 7. The population of transition matrices in the 3D space of entropy
rate (h,), redundancy (p,) and PIR (b,), all in bits. The concentrations
of points along the redundancy axis correspond to Markov chains
which are roughly periodic with periods of 2 (redundancy 1 bit), 3,
4, etc. all the way to period 7 (redundancy 2.8 bits). The colour of
each point represents its PIR—note that the highest values are found
at intermediate entropy and redundancy, and that the distribution as a
whole makes a curved triangle. Although not visible in this plot, it is
largely hollow in the middle.

this space forms a relatively thin curved sheet. Thus, it is a
reasonable simplification to project out the third dimension
(the PIR) and present an interface that is just two dimensional.
The right-angled triangle is rotated, reflected and stretched to
form an equilateral triangle with the h, = 0, p, = 0 vertex at
the top, the ‘redundancy’ axis down the left-hand side, and the
‘entropy rate’ axis down the right, as shown in fig. 8. This is our
‘Melody Triangle’ and forms the interface by which the system
is controlled. The user selects a point within the triangle, this
is mapped into the information space and the nearest transition
matrix is used to generate a sequence of values which are
then sonified either as pitched notes or percussive sounds. By
choosing the position within the triangle, the user can control the
output at the level of its ‘collative’ properties, with access to the
variety of patterns as described above and in § II-D. Though the
interface is 2D, the third dimension (PIR) is implicitly present,
as transition matrices retrieved from along the centre line of
the triangle will tend to have higher PIR. We hypothesise that,
under the appropriate conditions, these will be perceived as
more ‘interesting’ or ‘melodic.’

The Melody Triangle exists in two incarnations: a screen-
based interface where a user moves tokens in and around a
triangle on screen, and a multi-user interactive installation where
a Kinect camera tracks individuals in a space and maps their
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positions in physical space to the triangle. In the latter each
visitor that enters the installation generates a melody and can

collaborate with their co-visitors to generate musical textures.

This makes the interaction physically engaging and (as our
experience with visitors both young and old has demonstrated)
more playful. The screen based interface can serve as a
compositional tool. A number of tokens, each representing a
sonification stream or ‘voice’, can be dragged in and around the
triangle. For each token, a sequence of symbols is sampled using
the corresponding transition matrix, which are then mapped to
notes of a scale or percussive sounds'. Keyboard commands
give control over other musical parameters such as pitch register
and inter-onset interval. The system is capable of generating
quite intricate musical textures when multiple tokens are in the
triangle, but unlike other computer aided composition tools or
programming environments, the composer excercises control
at the abstract level of information-dynamic properties.

B. User trials with the Melody Triangle

We are currently in the process of using the screen-based
Melody Triangle user interface to investigate the relationship
between the information-dynamic characteristics of sonified
Markov chains and subjective musical preference. We carried
out a pilot study with six participants, who were asked to use
a simplified form of the user interface (a single controllable
token, and no rhythmic, registral or timbral controls) under two
conditions: one where a single sequence was sonified under user
control, and another where an additional sequence was sonified
in a different register, as if generated by a fixed invisible token
in one of four regions of the triangle. In addition, subjects were
asked to press a key if they ‘liked’ what they were hearing.
We recorded subjects’ behaviour as well as points which
they marked with a key press. Some results for two of the
subjects are shown in fig. 9. Though we have not been able
to detect any systematic across-subjects preference for any
particular region of the triangle, subjects do seem to exhibit

IThe sampled sequence could easily be mapped to other musical processes,
possibly over different time scales, such as chords, dynamics and timbres. It
would also be possible to map the symbols to visual or other outputs.
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Fig. 9. Dwell times and mark positions from user trials with the
on-screen Melody Triangle interface, for three subjects. The left-hand
column shows the positions in a 2D information space (entropy rate
vs multi-information rate in bits) where each spent their time; the area
of each circle is proportional to the time spent there. The right-hand
column shows point which subjects ‘liked’; the area of the circles
here is proportional to the duration spent at that point before the point
was marked.

distinct kinds of exploratory behaviour. Our initial hypothesis,
that subjects would linger longer in regions of the triangle
that produced aesthetically preferable sequences, and that this
would tend to be towards the centre line of the triangle for all
subjects, was not confirmed. However, it is possible that the
design of the experiment encouraged an initial exploration of
the space (sometimes very systematic, as for subject c¢) aimed
at understanding how the system works, rather than finding
musical patterns. It is also possible that the system encourages
users to create musically interesting output by moving the
token, rather than finding a particular spot in the triangle which
produces a musically interesting sequence by itself.
Comments collected from the subjects suggest that the
information-dynamic characteristics of the patterns were readily
apparent to most: several noticed the main organisation of the
triangle, with repetetive notes at the top, cyclic patterns along
one edge, and unpredictable notes towards the opposite corner.
Some described their systematic exploration of the space. Two



felt that the right side was ‘more controllable’ than the left (a
consequence of their ability to return to a particular distinctive
pattern and recognise it as one heard previously). Two reported
that they became bored towards the end, but another felt there
wasn’t enough time to ‘hear out’ the patterns properly. One
subject did not ‘enjoy’ the patterns in the lower region, but
another said the lower central regions were more ‘melodic’ and
‘interesting’.

We plan to continue the trials with a slightly less restricted
user interface in order make the experience more enjoyable
and thereby give subjects longer to use the interface; this may
allow them to get beyond the initial exploratory phase and
give a clearer picture of their aesthetic preferences. In addition,
we plan to conduct a study under more restrictive conditions,
where subjects will have no control over the patterns other than
to signal (a) which of two alternatives they prefer in a forced
choice paradigm, and (b) when they are bored of listening to
a given sequence.

V. CONCLUSIONS

We have looked at several emerging areas of application of
the methods and ideas of information dynamics to various
problems in music analysis, perception and cognition, including
musicological analysis of symbolic music, audio analysis,
rhythm processing and compositional and creative tasks. The
approach has proved successful in musicological analysis, and
though our initial data on rhythm processing and aesthetic
preference are inconclusive, there is still plenty of work to be
done in this area: where-ever there are probabilistic models,
information dynamics can shed light on their behaviour.
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