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Outline
Expectation and surprise in music
Surprise, entropy and information in random sequences
Markov chains
Application: The Melody Triangle
More process models
Application: Analysis of minimalist music
Application: Beat tracking and rhythm

Summary and conclusions
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Outline

Expectation and surprise in music
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‘Unfoldingness’

Music is experienced as a phenomenon that ‘unfolds’ in
blancmange
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‘Unfoldingness’

Music is experienced as a phenomenon that ‘unfolds’ in
(just kidding)
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‘Unfoldingness’

its entirety.

Music is experienced as a phenomenon that ‘unfolds’ in
time, rather than being apprehended as a static object presented in
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‘Unfoldingness’

Music is experienced as a phenomenon that ‘unfolds’ in

time, rather than being apprehended as a static object presented in
its entirety.

[This is recognised in computation linguistics where the
parsing.]

phenomenon is known as incrementality, e.g. in incremental

&
Q¥ Queen Mary

University of London

(IR {Id digital music

[m]

&

4/55



Yy
W

‘Unfoldingness’

its entirety.

Music is experienced as a phenomenon that ‘unfolds’ in
time, rather than being apprehended as a static object presented in

[This is recognised in computation linguistics where the
parsing.]

phenomenon is known as incrementality, e.g. in incremental

Meyer [Mey67] argued that musical experience depends on how we
change and revise our conceptions as events happen, on how
expectation and prediction interact with occurrence, and that, to a

large degree, the way to understand the effect of music is to focus
on this ‘kinetics’ of expectation and surprise.
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Expectation and suprise in music

Music creates expectations of what is to come next, which may be
fulfilled immediately, after some delay, or not at all. Suggested by
music theorists, e.g. L. B. Meyer [Mey67] and Narmour [Nar77] but
also noted much earlier by Hanslick [Han86] in the 1850s:

‘The most important factor in the mental process which
accompanies the act of listening to music, and which converts
it to a source of pleasure, is ... the intellectual satisfaction
which the listener derives from continually following and
anticipating the composer’s intentions—now, to see his
expectations fulfilled, and now, to find himself agreeably
mistaken. It is a matter of course that this intellectual flux and
reflux, this perpetual giving and receiving takes place
unconsciously, and with the rapidity of lightning-flashes.’
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Probabilistic reasoning

Making predictions and assessing surprise is essentially reasoning
with degrees of belief and (arguably) the best way to do this is using
Bayesian probability theory [Cox46, Jay88].
[NB. this is subjective probability as advocated by e.g. De Finetti
and Jaynes.]
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adapted through listening.

We suppose that familiarity with different styles of music takes the
form of various probabilistic models, and that these models are
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Probabilistic reasoning

Making predictions and assessing surprise is essentially reasoning
with degrees of belief and (arguably) the best way to do this is using
Bayesian probability theory [Cox46, Jay88].
[NB. this is subjective probability as advocated by e.g. De Finetti
and Jaynes.]

adapted through listening.

We suppose that familiarity with different styles of music takes the
form of various probabilistic models, and that these models are

Experimental evidence that humans are able to internalise

that statistical models are effective for computational analysis of
music, e.g. [CW95, Pea05].
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Music and information theory

With probabilistic models in hand we can apply quantitative

information theory: we can compute entropies, relative entropies,
mutual information, and all that.
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mutual information, and all that.

Lots of interest in application of information theory to perception,
music and aesthetics since the 50s, e.g. Moles [Mol66], Meyer
[Mey67], Cohen [Coh62], Berlyne [Ber71]. (See also Bense, Hiller)
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Idea is that subjective qualities and states like uncertainty, surprise,
complexity, tension, and interestingness are determined by
information-theoretic quantities.
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Music and information theory

With probabilistic models in hand we can apply quantitative

information theory: we can compute entropies, relative entropies,
mutual information, and all that.

Lots of interest in application of information theory to perception,
music and aesthetics since the 50s, e.g. Moles [Mol66], Meyer
[Mey67], Cohen [Coh62], Berlyne [Ber71]. (See also Bense, Hiller)

Idea is that subjective qualities and states like uncertainty, surprise,
complexity, tension, and interestingness are determined by
information-theoretic quantities.

Berlyne [Ber71] called such quantities ‘collative variables’, since
they are to do with patterns of occurrence rather than

medium-specific details. Information aesthetics.
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Probabilistic model-based observer hypothesis

e As we listen, we maintain a probabilistic model that enables us
to make predictions. As events unfold, we revise our
future.

probabilistic ‘belief state’, including predictions about the
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probabilistic ‘belief state’, including predictions about the

e Probability distributions and changes in distributions are

characterised in terms of information theoretic-measures such
as entropy and relative entropy (KL divergence).
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Probabilistic model-based observer hypothesis

e As we listen, we maintain a probabilistic model that enables us
to make predictions. As events unfold, we revise our
future.

probabilistic ‘belief state’, including predictions about the

e Probability distributions and changes in distributions are

characterised in terms of information theoretic-measures such
as entropy and relative entropy (KL divergence).

e The dynamic evolution of these information measures captures
significant structure, e.g. events that are surprising,
informative, explanatory etc.
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Features of information dynamics

Abstraction: sensitive mainly to patterns of occurence, rather than
details of which specific things occur or the sensory medium.
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Features of information dynamics

Abstraction: sensitive mainly to patterns of occurence, rather than
details of which specific things occur or the sensory medium.

Generality: applicable in principle to any probabilistic model, in
particular, models with time-dependent latent variables such as

HMMs. Many important musical concepts like key, harmony, and
beat are essentially ‘hidden variables’.
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Richness: when applied to models with latent variables, can result
tempo, etc.

in many-layered analysis, capturing information flow about harmony,
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Features of information dynamics
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details of which specific things occur or the sensory medium.
Generality: applicable in principle to any probabilistic model, in
particular, models with time-dependent latent variables such as
HMMs. Many important musical concepts like key, harmony, and
beat are essentially ‘hidden variables’.

Richness: when applied to models with latent variables, can result
tempo, etc.

in many-layered analysis, capturing information flow about harmony,

3

Subjectivity: all probabilities are subjective probabilities relative to
observer’s model, which can depend on observer’s capabilities and
prior experience.

Yay
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Outline

Surprise, entropy and information in random sequences
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Information theory primer

- Entropy

Let X be a discrete-valued random (in the sense of subjective
probability) variable. Entropy is a measure of uncertainty. If

observer expects to see x with probability p(z), then

H(X)

reX

> —p(x)log p(x)
= E [~ log p(X)].

low for concentrated ones.

Consider — log p(x) as the ‘surprisingness’ of z, then the entropy is
the ‘expected surprisingness’. High for spread out distributions and
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Inf

3

ormation theory primer - Relative entropy

Relative entropy or Kullback-Leibler (KL) divergence quantifies
difference between probability distributions. If observer receives
data D, divergence between (subjective) prior and posterior
distributions is the amount of information in D about X for this
observer:

I(D - X) = D(pxppllpx) = Y _ p(x|D) 1o (|))
rzeX

If observing D causes a large change in belief about X, then D
contained a lot of information about X.

Like Lindley’s (1956) information (thanks Lars!).
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Information theory primer

Mutual information

written in several ways:

Mutual information between (MI) X7 and X5 is the expected
amount of information about X5 in an observation of X;. Can be

I(Xy; Xo) = Z Py, 22)log P]ZZ;??;;)
= H(Xy) + H(Xz) - H(X1, X5)
= H(X2) — H(Xo| X1).

(1) Expected information about X5 in an observation of X7;

3

(2) Expected reduction in uncertainty about X, after observing X7;
(3) Symmetric: I(X1; X2) = I(X2; X1).
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Information theory primer

Conditional Ml

variables to entropies:

Information in one variable about another given observations of
some third variable. Formulated analogously by adding conditioning

I(X1; Xo| X3) = H(X1|X3) — H(X1| X2, X3).

Makes explicit the dependence of information assessment on

background knowledge, represented by conditioning variables.
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Information theory primer

- |-Diagrams
Information diagrams are a Venn diagram-like represention of

entropies and mutual informations for a set of random variables
Xy
Ljo3 = H(X1]| X2, X3)
vw I3 = I(X1; X3/ X2)
W Lijo3 + Ihzp = H(X1]|X2)
X

Lgjs 4 Loz = I(X1; Xo)
X3

The areas of the three circles represent H(X), H(X2) and H(X3)
respectively. The total shaded area is the joint entropy

Qf Queen Mary
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H (X, X2, X3). Each undivided region is an atom of the |-diagram.
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Information theory in sequences

Consider an observer receiving elements of a random sequence
(..., X1, X0, X1,X5,...),sothat at any time t there is a ‘present
— —

X}, an observed pasti X;, and an unobserved future X,. Eg, at
timet = 3:

— —
Past: X3 Present Future X3

Consider how the observer’s belief state evolves when, having
observed up to X, it learns the value of X3.
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‘Surprise’ based quantities

Xt = T¢.

*)
To obtain first set of measures, we ignore the future X; and
(Ensider the probability distribution for X; give the observed past
<

@ Surprisingness: negative log-probability ¢; = — logp(mt]a).
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‘Surprise’ based quantities

Xi= x4

*)
To obtain first set of measures, we ignore the future X; and
consider the probability distribution for X; give the observed past
—

@ Surprisingness: negative log- probablllty by =

— log p(mt’§t>
of the predictive distribution, H(Xt\Xt— xt) uncertainty

® Expected surprisingness given context X = :xt is the entropy
about X; before the observation is made
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‘Surprise’ based quantities

Xi= x4

*)
To obtain first set of measures, we ignore the future X; and
consider the probability distribution for X; give the observed past
—

@ Surprisingness: negative log- probablllty by =

(;
= —10gp($t’$t>
® Expected surprisingness given context X = :xt is the entropy

of the predictive distribution, H(Xt\Xt— xt) uncertainty
about X; before the observation is made

© Expectation over all possib(lia realisations of process is the

conditional entropy H (X;|X;) according to the observer’s
model. For stationary process, is entropy rate h
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Predictive information

Second set of measures based on amount of information the

N

observation X;=x; carries about about the unobserved future X,
given that we already know the past Xt— Tyl is
—
It = I(Xt—xt — Xt‘Xt— .%'t)

_)
Is KL divergence between beliefs about future X; prior and posterior
to observation X;=x;. Hence, for continuous valued variables
invariant to invertible transformations of the observation spaces
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Predictive information based quantities

@ Instantaneous predictive information (IP) is just Z;.

L3
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Predictive information based quantities

@ Instantaneous predictive information (IP) is just Z;.

(2] Expectatlon of Z; before observation at time ¢ is
I(Xy; Xt\Xt_ xt) mutual information conditioned on
observed past. Is the amount of new information about the

future expected from the next observation. Useful for directing
attention towards the next event even before it happens?

W Queen
CS5 %ﬁrwm“m y [N {R{g digital music 5 -

19/55



Predictive information based quantities

@ Instantaneous predictive information (IP) is just Z;.
(2] Expectatlon of Z; before observation at time ¢ is

I(Xy; Xt\Xt_ xt) mutual information conditioned on
observed past. Is the amount of new information about the
future expected from the next observation. Useful for directing
attention towards the next event even before it happens?

© Expectation over all p055|ble reallsat|ons is the conditional
mutual information I(Xy; Xt|Xt) For stationary process, this
is the global predictive information rate (PIR), the average rate

at which new information arrives about the future. In terms of
condltlonal entroples has two forms:

-
Xt‘Xt Xt]Xt,Xt)orH(Xt]Xt (Xt‘Xtth)-

19/55



Global measures for stationary processes

process information measures:

For a stationary random process model, the average levels of
suprise and information are captured by the time-shift invariant

<;
entropy rate :  h, = H(X;|X,)

<_
multi-information rate :  p, = I(X4; Xy) = H(X¢) — h

— =
residual entropy rate : 1, = H(X;| X, Xy)

—
predictive information rate : b, = I(Xy; X¢|Xy) = hy — 14

3

Residual entropy also known as erasure entropy [VWOB].
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Process I-diagrams

X Xo
infinite
past
Xo
e, X9 Xi,...
infinite infinite
past future

Universil

ity of London

Marginal entropy of ‘present’ X is H(Xo) = py + 7, + bp.
Entropy rate is h,, = r;, + b,.
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Outline

Markov chains
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Markov chains - Definitions

Let X be a Markov chain with state space {1,..., K}, i.e. the X}
take values from 1 to K.

(%)

()—()

Parameterised by transition matrix a € RE*X je.

p(Xi1=1|X=7) = a;;. Assume irreducibility, ergodicity etc. to
ensure uniqueness of stationary distribution 7 such that

p(X=1) = n} independent of t. Entropy rate as a function of a is
K K
hla) =) 78> -

ai;logai;.
j=1 =1
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Markov chains - PIR

Predictive information rate for first order chains comes out in terms
of entropy rate function as

where a? is two-step transition matrix.
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Markov chains - PIR

Predictive information rate for first order chains comes out in terms
of entropy rate function as

where a? is two-step transition matrix.

Can be generalised to higher-order transition matrices

b, = h(a™ ') — Nh(a),

where N is the order of the chain and & is a sparse KV x KV

transition matrix over product state space of N consecutive
observations (step size 1).
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Entropy rate and PIR in Markov chains

o
e

transmat (a) transmat (b)

Juill. 4

transmat (c) transmat (d)

I i 3 ‘ € - -
entropy rate

For given K, entropy rate varies between O (deterministic sequence)
and log K when a;; = 1/K for all 4, j. Space of transition matrices
explored by generating them at random and plotting entropy rate vs
PIR. (Note inverted ‘U’ relationship).
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o
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o
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Samples from processes with different PIR

sequence (a)

sequence (b)

| JRUL L0 OO L0 W

sequence (c)

sequence (d)

I RITNTN
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Sequence (a) is repetition of state 4 (see transmat (a) on previous
slide). System (b) has the highest PIR.
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Outline

Application: The Melody Triangle
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Complexity and interestingness: the Wundt Curve

Studies looking into the relationship between stochastic complexity
(usually measured as entropy or entropy rate) and aesthetic value,
reveal an inverted ‘U’ shaped curve [Ber71]. (Also, Wundt curve
[Wun97]). Repeated exposure tends to move stimuli leftwards.

just right Explanations for this usually
oA "N appeal to a need for a
(0] ‘ ’
s / balance’ between order and
§n chaos, unity and diversity,
) incoherent, and so on, in a generally
boring, unstructured imprecise way.
predictable
N
>
deterministic random
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PIR as a measure of cognitive activity

The predictive information rate incorporates a similar balance

automatically: is maximal for sequences which are neither
deterministic nor totally uncorrelated across time.

too predictable: [. e o o o .]

intermediate: (. o @ @) @) O]

too random: (. @) @) @) @) O]

each new part supplies new information about parts to come.
‘g:’ Queen Mary
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(Black: observed; red: unobserved; paler: greater uncertainty.) Our
interpretation: Things are ‘interesting’ or at least ‘salient’ when
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The Melody Triangle - Information space

pred—info rate

entropy rate

redundancy

Population of transition matrices in 3D space of A, p,, and b,,.
Colour of each point represents PIR. Shape is mostly (not
completely) hollow inside: forming roughly a curved triangular sheet.
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The Melody Triangle - User interface

D High Predictive Information Rate

. Low Predictive Information Rate

Repetition

Allows user to place tokens in the triangle to cause sonification of a
Markov chain with corresponding information ‘coordinate’.
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Subjective information

equal expectations.

So far we’ve assumed that sequence is actually sampled from from
observer. This means time averages of IPl and surprise should

a stationary Markov chain with a transition matrix known to the
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Subjective information

equal expectations.

So far we’ve assumed that sequence is actually sampled from from
observer. This means time averages of IPl and surprise should

a stationary Markov chain with a transition matrix known to the

What if sequence is sampled from some other Markov chain, or is
produced by some unknown process?
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Subjective information

So far we’ve assumed that sequence is actually sampled from from
a stationary Markov chain with a transition matrix known to the
observer. This means time averages of IPl and surprise should
equal expectations.

What if sequence is sampled from some other Markov chain, or is
produced by some unknown process?

e In general, it may be impossible to identify any ‘true’ model.
There are no ‘objective’ probabilities; only subjective ones, as
argued by de Finetti [dF75].
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3
W

University of London

 Queen Mary

Subjective information

So far we’ve assumed that sequence is actually sampled from from

a stationary Markov chain with a transition matrix known to the
equal expectations.

observer. This means time averages of IPl and surprise should
What if sequence is sampled from some other Markov chain, or is
produced by some unknown process?
e In general, it may be impossible to identify any ‘true’ model.
There are no ‘objective’ probabilities; only subjective ones, as
argued by de Finetti [dF75].

e If sequence is sampled from some Markov chain, we can
compute (time) averages of observer’s average subjective

surprise and Pl and also track what happens if observer
gradually learns the transition matrix from the data.
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Effect of learning on information dynamics
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(a/b/e/f): multiple runs starting from same initial condition but
using different generative transition matrices. (¢/d/g/h): multiple
runs starting from different initial conditions and converging on
transition matrices with (c/g) high and (d/h) low PIR.
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Outline

More process models
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Exchangeable sequences and parametric models

De Finetti’s theorem says that an exchangeable random process

parameterised model:

can be represented as a sequence variables which are iid given
some hidden probability distribution, which we can think of as a
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Exchangeable sequences and parametric models

De Finetti’s theorem says that an exchangeable random process

some hidden probability distribution, which we can think of as a
parameterised model:

can be represented as a sequence variables which are iid given

Observer’s belief state at time

t includes probability

distribution over the

o
parameters p(O=0|X = x;).
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Exchangeable sequences and parametric models

De Finetti’s theorem says that an exchangeable random process

some hidden probability distribution, which we can think of as a
parameterised model:

can be represented as a sequence variables which are iid given

Observer’s belief state at time

t includes probability

distribution over the
parameters p(©=0|X = ,).

Each observation causes re\ﬂsion of belief state and hence supplies
information I(X;=xz; — O|X= }?t) about ©: In previous work we
called this the ‘model information rate’.
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Exchangeable sequences and parametric models

De Finetti’s theorem says that an exchangeable random process

parameterised model:

can be represented as a sequence variables which are iid given
some hidden probability distribution, which we can think of as a

Observer’s belief state at time

t includes probability

distribution over the

o
parameters p(O=0|X = x;).
Each observation causes re\ﬂsion of belief state and hence supplies
information I(X;=xz; — O|X= }?t) about ©: In previous work we
called this the ‘model information rate’. (Same as Haussler and

Opper’'s [HO95] IIG or Itti and Baldi’s [IBO5] Bayesian surprise.)
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lIG equals IPl in (some) XRPs

Mild assumptions yield a
relationship between IIG

(instantaneous information gain)

and IPI. (Everythyg here implicitly
conditioned on X ). X, )_ft
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lIG equals IPl in (some) XRPs

Mild assumptions yield a
relationship between IIG

Ja
(instantaneous information gain) "'
and IPI. (Everythyg here implicitly v
conditioned on X}). X;

_>
Xt

N
@ X, | X,|O: observations iid given © for XRPs;
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Mild assumptions yield a
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conditioned on X}). X;
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Xt
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@ X, | X,|O: observations iid given © for XRPs;

AN
® O L X;|X,: assumption that X, adds no new information
about © given infinitely long sequence X; = X¢{1.00-
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lIG equals IPl in (some) XRPs

Mild assumptions yield a
relationship between IIG

Ja
(instantaneous information gain) %'
and IPI. (Everythyg here implicitly v
conditioned on X}). X;

_>
Xt
N
@ X, | X,|O: observations iid given © for XRPs;

AN
® O L X;|X,: assumption that X, adds no new information
about © given infinitely long sequence X; = X¢{1.00-

— —
Hence, I(X¢; 04 Xy) = I(Xy; X4| Xt) = Zs.
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lIG equals IPl in (some) XRPs

Mild assumptions yield a 6
relationship between IIG
(instantaneous information gain) %'
and IPI. (Everythyg here implicitly
conditioned on X;).

v ﬁ.
Xt Xt
N
@ X, | X,|O: observations iid given © for XRPs;
—
® O L X;|X,: assumption that X, adds no new information
about © given infinitely long sequence X; = X¢{1.00-

— —
Hence, I(X¢; 04 Xy) = I(Xy; X4| Xt) = Zs.

3

«—
Can drop assumption 1 and still get 1(Xy; ©¢|X;) as an additive
component (lower bound) of Z;.
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Discrete-time Gaussian processes

Information-theoretic quantities used earlier have analogues for
continuous-valued random variables. For stationary Gaussian
processes, we can obtain results in terms of the power spectral
density S(w), (which for discrete time is periodic in w with period
27). Standard methods give

1 1 (7
H(X;) = 2<log27re+log27T S(w) dw),
1
hy, = 2<log27re+/ log S( )dw>
~ g M Sy dw— L [ 1ogS(w)d
Pu=3 g2ﬂiﬂww2ﬂiﬂgww.

Entropy rate is also known as Kolmogorov-Sinai entropy.
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PIR/Multi-information duality
Analysis yeilds PIR

by =

(lg/ 5(w) :

Cor

1 0g —— dw)
S(w)
Yields simple expression for finite-order autogregressive processes,

but beware: can diverge for moving average processes!
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PIR/Multi-information duality
Analysis yeilds PIR

by =

(lg/ 5(w) :

Cor

1 0g —— dw)
S(w)
Yields simple expression for finite-order autogregressive processes,

but beware: can diverge for moving average processes!
Compare with multi-information rate

1 1
p“:§ logi

1 s
S(w) dw — — log S(w) dw) .
2 J_, 2 J_,
Yields simple expression for finite-order moving-average processes
but can diverge for marginally stable autogregressive processes
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PIR/Multi-information duality
Analysis yeilds PIR:

1 ™ 1
log — — [ log——
u = (g /s "o gs<>d“’)

Yields simple expression for finite-order autogregressive processes,
but beware: can diverge for moving average processes!

Compare with multi-information rate:

1 1 (™ 1 ("

=75 log% - S(w) dw — by _WlogS(w) dw ) .
Yields simple expression for finite-order moving-average processes
but can diverge for marginally stable autogregressive processes

Infinities are troublesome and point to problem with notion of
infinitely precise observation of continuous-valued variables
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Outline

Application: Analysis of minimalist music
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Material and Methods

We took two pieces of minimalist music by Philip Glass, Two Pages
(1969) and Gradus (1968). Both monophonic and isochronous, so
representable very simply as a sequence of symbols (notes), one
symbol per beat, yet remain ecologically valid examples of ‘real’
music.

We use an elaboration of the Markov chain model—not necessarily a
good model per se, but that wasn’t the point of the experiment.
Markov chain model was chosen as it is tractable from and
trivial.

information dynamics point of view while not being completely
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Time-varying transition matrix model

We allow transition matrix to vary slowly with time to track changes

in the sequence structure. Hence, observer’s belief state includes a
probabilitiy distribution over transition matrices; we choose a
product of Dirichlet distributions:

palf) =TI, poir(a:10,),

where a.; is ™ column of a and @ is an K x K parameter matrix.

At each time step, distribution first spreads under mapping

(91']' — Bew

(B +0ij)

3
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to model possibility that transition matrix has changed (8 = 2500 in

our experiments). Then it contracts due to new observation
providing fresh evidence about transition matrix.
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Two Pages - Results

predictive uncertainty, mean=0.595688 Thick lines: part
f boundaries as
0 L [T | indicated by Glass;
expected predictive information, mean=0.424679 grey lines (top four
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Two Pages

Rule based analysis

Local boundary detection model (Cambouropoulos)
0.1 #‘-— T T
0 Il Il Il Il Il
Pitch proximity grouping rule 3a (Lerdahl and Jackendoff)

0.2 T T T T
0.1F . —J B
0 Il Il Il Il Il Il

0 1000 2000 3000 4000 5000 6000

time (in note durations)

7000
Analysis of Two Pages using (top) Cambouropoulos’ Local Boundary
Detection Model (LBDM) and (bottom) Lerdahl and Jackendoff’s
grouping preference rule 3a (GPR3a), which is a function of pitch
proximity. Both analyses indicate ‘boundary strength’.
‘a;l Queen Mary

University of London

(IR {Id digital music

[m]

&

43/55



Two Pages

Discussion

Correspondence between the information measures and the
structure of the piece is quite close. Good agreement between the
information signal.

six ‘most surprising moments’ chosen by expert listener and model

What appears to be an error in the detection of the major part
boundary (between events 5000 and 6000) actually raises a known
anomaly in the score, where Glass places the boundary several

events before there is any change in the pattern of notes.

Alternative analyses of Two Pages place the boundary in agreement
with peak in our surprisingness signal.
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Gradus - Metrical analysis

average surprisingness over 32 beat metre average predictive information, 32 beat metre
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Outline

Application: Beat tracking and rhythm
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Bayesian beat tracker

Works by maintaining probabilistic belief state about time of next
beat and current tempo.

next beat following beat

Now - - beat period - - >

I
|
| |
| |
| |
| |
| |
| |
| |

TV YV

distribution of next event time
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Bayesian beat tracker

Works by maintaining probabilistic belief state about time of next
beat and current tempo.

next beat following beat

Now - - beat period - - >

I
|
| |
| |
| |
| |
| |
| |
| |

TV YV

distribution of next event time

Receives categorised drum events (kick or snare) from audio
analysis front-end.
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Information gain in the beat tracker

Each event triggers a change
in belief state, so we can
compute information gain

information
about beat parameters.

gain

after
event

before
event

beat grid parameters
(period and phase)
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Information gain in the beat tracker

Each event triggers a change
in belief state, so we can

compute information gain

information
gain after
event
about beat parameters.
Relationship between IIG and
IPl means we treat it as a

before
event
proxy for IPI.

beat grid parameters
(period and phase)
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Analysis of drum patterns

We analysed 17 recordings of drummers, both playing solo or with a
band. All patterns in were in 4/4.

¢ Information tends to arrive at beat times: consequence of
structure of model.
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Analysis of drum patterns

We analysed 17 recordings of drummers, both playing solo or with a
band. All patterns in were in 4/4.

¢ Information tends to arrive at beat times: consequence of
structure of model.

e Lots of information seems to arrive after drum fills and breaks
as the drummer reestablishes the beat.
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Analysis of drum patterns

We analysed 17 recordings of drummers, both playing solo or with a
band. All patterns in were in 4/4.

¢ Information tends to arrive at beat times: consequence of
structure of model.

e Lots of information seems to arrive after drum fills and breaks
as the drummer reestablishes the beat.

e No consistent pattern of information arrival in relation to
metrical structure, so no obvious metrical structure in

micro-timing of events. However, still possible that metrical
structure might emerge from predictive analysis of drum
pattern.
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Outline

Summary and conclusions
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Summary

e Dynamic, observer-centric information theory.
e Applicable to any dynamic probabilistic model.
¢ PIR potentially a measure of complexity.

e Simple analysis for Markov chains and Gaussian processes.
e Applications in music analysis and composition.

e Search for neural correlates is ongoing (that’s another talk...)
Thanks!
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