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Abstract—We describe an information-theoretic approach to
the analysis of music and other sequential data, which emphasises
the predictive aspects of perception, and the dynamic process of
forming and modifying expectations about an unfolding stream of
data, characterising these using the tools of information theory:
entropies, mutual informations, and related quantities. After
reviewing the theoretical foundations, we discuss a few emerging
areas of application, including musicological analysis, real-time
beat-tracking analysis, and the generation of musical materials
as a cognitively-informed compositional aid.

I. INTRODUCTION

The relationship between Shannon’s [1] information theory
and music and art in general has been the subject of some
interest since the 1950s [2]-[6]. The general thesis is that
perceptible qualities and subjective states like uncertainty,
surprise, complexity, tension, and interestingness are closely
related to information-theoretic quantities like entropy, relative
entropy, and mutual information.

Music is also an inherently dynamic process, where listeners
build up expectations about what is to happen next, which
may be fulfilled immediately, after some delay, or modified as
the music unfolds. In this paper, we explore this “Information
Dynamics” view of music, discussing the theory behind it and
some emerging applications.

A. Expectation and surprise in music

The idea that the musical experience is strongly shaped by the
generation and playing out of strong and weak expectations
was put forward by, amongst others, music theorists L. B.
Meyer [5] and Narmour [7], but was recognised much earlier;
for example, it was elegantly put by Hanslick [8] in the
nineteenth century:

‘The most important factor in the mental process
which accompanies the act of listening to music,
and which converts it to a source of pleasure, is
...the intellectual satisfaction which the listener
derives from continually following and anticipating
the composer’s intentions—now, to see his expec-
tations fulfilled, and now, to find himself agreeably
mistaken.
An essential aspect of this is that music is experienced as
a phenomenon that unfolds in time, rather than being appre-
hended as a static object presented in its entirety. Meyer argued

that the experience depends on how we change and revise
our conceptions as events happen, on how expectation and
prediction interact with occurrence, and that, to a large degree,
the way to understand the effect of music is to focus on this
‘kinetics’ of expectation and surprise.

Prediction and expectation are essentially probabilistic con-
cepts and can be treated mathematically using probability
theory. We suppose that when we listen to music, expectations
are created on the basis of our familiarity with various styles of
music and our ability to detect and learn statistical regularities
in the music as they emerge, There is experimental evidence
that human listeners are able to internalise statistical knowl-
edge about musical structure, e.g. [9], and also that statistical
models can form an effective basis for computational analysis
of music, e.g. [10]-[12].

With a probabilistic framework for music modelling and
prediction in hand, we can compute various information-
theoretic quantities like entropy, relative entropy, and mutual
information. Berlyne [13] called such quantities ‘collative
variables’, since they are to do with patterns of occurrence
rather than medium-specific details, and developed the ideas
of ‘information aesthetics’ in an experimental setting.

B. Information dynamic approach

Our working hypothesis is that, as an intelligent, predictive
agent (to which will refer as ‘it’) listens to a piece of music,
it maintains a dynamically evolving probabilistic belief state
that enables it to make predictions about how the piece will
continue, relying on both its previous experience of music
and the emerging themes of the piece. As events unfold, it
revises this belief state, which includes predictive distributions
over possible future events. These can be characterised in
terms of a handful of information theoretic-measures such
as entropy and relative entropy. By tracing the evolution of
a these measures, we obtain a representation which captures
much of the significant structure of the music.

One consequence of this approach is that regardless of the
details of the sensory input or even which sensory modality is
being processed, the resulting analysis is in terms of the same
units: quantities of information (bits) and rates of information
flow (bits per second). The information theoretic concepts in
terms of which the analysis is framed are universal to all sorts
of data. In addition, when adaptive probabilistic models are



used, expectations are created mainly in response to patterns
of occurence, rather the details of which specific things occur.
Together, these suggest that an information dynamic analysis
captures a high level of abstraction, and could be used to make
structural comparisons between different temporal media, such
as music, film, animation, and dance.

Another consequence is that the information dynamic ap-
proach gives us a principled way to address the notion of
subjectivity, since the analysis is dependent on the probability
model the observer starts off with, which may depend on
prior experience or other factors, and which may change over
time. Thus, inter-subject variablity and variation in subjects’
responses over time are fundamental to the theory.

II. THEORETICAL REVIEW
A. Entropy and information

Let X denote some variable whose value is initially unknown
to our hypothetical observer. We will treat X mathematically
as a random variable, with a value to be drawn from some set
X and a probability distribution representing the observer’s
beliefs about the true value of X. In this case, the observer’s
uncertainty about X can be quantified as the entropy of
the random variable H(X). For a discrete variable with
probability mass function p : X — [0, 1], this is

H(X) = —p(x)logp(=), (1)

reX

The negative-log-probability ¢(z) = — log p(z) of a particular
value x can usefully be thought of as the surprisingness of
the value x should it be observed, and hence the entropy is
the expectation of the surprisingness, E ¢(X).

Now suppose that the observer receives some new data D
that causes a revision of its beliefs about X. The information
in this new data about X can be quantified as the relative
entropy or Kullback-Leibler (KL) divergence between the prior
and posterior distributions p(z) and p(z|D) respectively:
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When there are multiple variables X, X5 etc. which the
observer believes to be dependent, then the observation of
one may change its beliefs and hence yield information about
the others. The joint and conditional entropies as described in
any textbook on information theory (e.g. [14]) then quantify
the observer’s expected uncertainty about groups of variables
given the values of others. In particular, the mutual information
I(X1; X2) is both the expected information in an observation
of Xy about X; and the expected reduction in uncertainty
about X; after observing Xo:

Ipx = D(pxpllpx) = 2

I(X1; Xo) = H(X,) — H(X1]X2), 3)

where H(X:|X2) = H(X;,X2) — H(X3) is the condi-
tional entropy of X5 given X;. A little algebra shows that
I(X1;X5) = I(X2;X7) and so the mutual information is

Lj23 = H(X1| X2, X3)
Lz = 1(X1; X3]| X2)
Loz + 132 = H(X1|X>)

Loz + T2z = 1(X1; X2)

Fig. 1.  I-diagram of entropies and mutual informations for three
random variables X1, X2 and X3. The areas of the three circles
represent H(X1), H(X2) and H(X3) respectively. The total shaded
area is the joint entropy H (X1, X2, X3). The central area I123 is the
co-information [16]. Some other information measures are indicated
in the legend.

symmetric in its arguments. A conditional form of the mutual
information can be formulated analogously:

I(X1; Xo|X3) = H(X | X3) — H(X1] X2, X3). (4

These relationships between the various entropies and mutual
informations are conveniently visualised in information dia-
grams or I-diagrams [15] such as the one in fig. 1.

B. Surprise and information in sequences

Suppose that (..., X_1, Xo, X7,...) is a sequence of random
variables, infinite in both directions, and that x is the associ-
ated probability measure over all realisations of the sequence.
In the following, p will simply serve as a label for the process.
We can indentify a number of information-theoretic measures
meaningful in the context of a sequential observation of the
sequence, during which, at any timeet, the sequence can be
divided into a ‘present’ X, a ‘past’ X, = (o, Xio2, Xio1),
and a ‘future’ Xy = (Xi41, Xiq2,...). We will write the
actually observed value of X; as xy, and the sequence of
observations up to but not including x; as xt

The in-context surprisingness of the observation X; = xy
depends on both x; and the context a;t

b = —logp(wt\xt). @)

However, before X; is observed, the observer can compute the
expected surprisingness as a measure of its uncertalnty about
X;; this may be written as an entropy H (Xt|X t— act) but
note that this is conditional on the event X £ = xt, not the
variables X ¢+ as in the conventional conditional entropy.

The Hsurpris.ingness ¢y and expected surprisingness
H(X:| X = (a_:t) can be understood as subjective information
dynamic measures, since they are based on the observer’s
probability(_model in the context of the actually observed
sequence x;. They characterise what it is like to be ‘in
the observer’s shoes’. If we view the observer as a purely
passive or reactive agent, this would probably be sufficient,
but for active agents such as humans or animals, it is
often necessary to aniticipate future events in order, for
example, to plan the most effective course of action. It makes
sense for such observers to be concerned about the predictive
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Fig. 2.  I-diagrams for several information measures in stationary
random processes. Each circle or oval represents a random variable or
sequence of random variables relative to time ¢ = 0. Overlapped areas
correspond to various mutual informations. In (a) and (c), the circle
represents the ‘present’. Its total area is H(Xo) = pp+7,+b,, where
Py is the multi-information rate, r,, is the residual entropy rate, and b,,
is the predictive information rate. The entropy rate is h, = r, + b,.
The small dark region below Xy in (¢) is 0, = E — py.

probability distribution over future events, p(Z¢|%¢). When an
observation X;=x; is made in this context, the instantaneous
predictive information (IPI) Z; at time ¢ is the information.in
the event X;=x; about the entlre future of the sequence X 1

given the observed past X t = xt Referring to the definition
of information (2), this is the KL divergence between prior
and posterior distributions over possible futures, which written
out in full, is

>

TEX™

p(Z4|ze, w4)

— — y

p(xt|xtaxt)log t(— - 9 (6)
P( t|xe)

where the sum is to be taken over the set of infinite sequences
X*. Note that it is quite possible for an event to be surprising
but not informative in a predictive sense. As with the surpris-
ingness, the observer can compute its expected IPI at time ¢,

which reduces to a mutual information I (Xt,X t|X = xt)
conditioned on the observed past. This could be used, for
example, as an estimate of attentional resources which should
be directed at this stream of data, which may be in competition
with other sensory streams.

C. Information measures for stationary random processes

If we step back, out of the observer’s shoes as it were,
and consider the random process (..., X_1, Xo, X1,...) as
a statistical ensemble of possible realisations, and furthermore
assume that it is stationary, then it becomes possible to define
a number of information-theoretic measures, closely related to

those described above, but which characterise the process as
a whole, rather than on a moment-by-moment basis. Some of
these, such as the entropy rate, are well-known, but others
are only recently being investigated. (In the following, the
assumption of stationarity means that the measures defined
below are independent of ¢.)

The entropy rate of the process is the entropy of the
‘present’ X, given the ‘past’:

hy = H(ti?t)- @)

The entropy rate is a measure of the overall surprisingness
or unpredictability of the process, and gives an indication of
the average level of surprise and uncertainty that would be
experienced by an observer computing the measures of §II-B
on a sequence sampled from the process.

The multi-information rate p, (following Dubnov’s [17]
notation for what he called the ‘information rate’) is the mutual
information between the ‘past’ and the ‘present’:

pp=1(X3; X)) = H(X,) — hy. @®)

It is a measure of how much the preceeding context of an
observation helps in predicting or reducing the suprisingness
of the current observation.

The excess entropy [18] is the mutual information between
the entire ‘past’ and the entire ‘future’:

— —
E:I(Xt;Xt,Xt). (9)

Both the excess entropy and the multi-information rate can be
thought of as measures of redundancy, quantifying the extent
to which the same information is to be found in all parts of
the sequence.

The predictive information rate (or PIR) [19] is the mutual
information between the ‘present’ and the ‘future’ given the
‘past’:

— - — —
bu:I(Xt;Xt|Xt):H(Xt|Xt)*H(Xt|Xt,Xt)a (10)

which can be read as the average reduction in uncertainty
about the future on learning X;, given the past. Due to the
symmetry of the mutual information, it can also be written as

— — =
bp, = H(Xt|Xf) — H(Xt‘Xt,Xt) = hlL — T,uv (11)

where 1, = H(Xt\)—()'t,)?t), is the residual [20], or erasure
[21] entropy rate. These relationships are illustrated in Fig. 2,
along with several of the information measures we have
discussed so far. The PIR gives an indication of the average
IPI that would be experienced by an observer processing a
sequence sampled from this process.

James et al [22] review several of these information mea-
sures and introduce some new related ones. In particular they

identify the o, = I (X t,X +|X¢), the mutual information
between the past and the future given the present, as an inter-
esting quantity that measures the predictive benefit of model-
building, that is, maintaining an internal state summarising
past observations in order to make better predictions. It is
shown as the small dark region below the circle in fig. 2(c).
By comparing with fig. 2(b), we can see that o, = E' — p,,.



D. First and higher order Markov chains

In [19] we derived expressions for all the information measures
described in §1I-B for ergodic first order Markov chains (i.e.
that have a unique stationary distribution). We also showed that
the PIR can be expressed simply in terms of entropy rates: if
we let a denote the K x K transition matrix of a Markov chain
over an alphabet of {1,..., K}, such that a;; = Pr(X;=
i|X;_1=7), and let h : RE*X — R be the entropy rate
function such that h(a) is the entropy rate of a Markov chain
with transition matrix a, then the PIR is

b, = h(a?) — h(a), (12)

where a2, the transition matrix squared, is the transition matrix
of the ‘skip one’ Markov chain obtained by jumping two steps
at a time along the original chain.

Second and higher order Markov chains can be treated in
a similar way by transforming to a first order representation
of the high order Markov chain. With an Nth order model,
this is done by forming a new alphabet of size KV consisting
of all possible N-tuples of symbols from the base alphabet.
An observation Z; in this new model encodes a block of N
observations (¢41, ..., 2N ) from the base model. The new
Markov of chain is parameterised by a sparse KV x KV
transition matrix @, in terms of which the PIR is

hy =h(a), b, =h@""") - Nn(@),  (13)

where a™V*1 is the (N 4-1)th power of the first order transition
matrix. Other information measures can also be computed for
the high-order Markov chain, including the multi-information
rate p,, and the excess entropy E. (These are identical for first
order Markov chains, but for order N chains, £ can be up to
N times larger than p,,.)

In our experiments with visualising and sonifying sequences
sampled from first order Markov chains [19], we found that the
measures 1, p,, and b,, correspond to perceptible characteris-
tics, and that the transition matrices maximising or minimising
each of these quantities are quite distinct. High entropy rates
are associated with completely uncorrelated sequences with
no recognisable temporal structure (and low p,, and b,,). High
values of p,, are associated with long periodic cycles (and low
h, and b,). High values of b, are associated with intermediate
values of p, and h,, and recognisable, but not completely
predictable, temporal structures. These relationships are visible
in fig. 7 in § IV, where we pick up this thread again, with an
application of information dynamics in a compositional aid.

III. INFORMATION DYNAMICS IN ANALYSIS
A. Musicological Analysis

In [19], we analysed two pieces of music in the minimalist
style by Philip Glass: Two Pages (1969) and Gradus (1968).
The analysis was done using a first-order Markov chain
model, with the enhancement that the transition matrix of
the model was allowed to evolve dynamically as the notes
were processed, and was tracked (in a Bayesian way) as a
distribution over possible transition matrices, rather than a
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Fig. 3. Analysis of Two Pages. The thick vertical lines are the part

boundaries as indicated in the score by the composer. The thin grey
lines indicate changes in the melodic ‘figures’ of which the piece is
constructed. In the ‘model information rate’ panel, the black asterisks
mark the six most surprising moments selected by Keith Potter. The
bottom two panels show two rule-based boundary strength analyses.
All information measures are in nats. Note that the boundary marked
in the score at around note 5,400 is known to be anomalous; on
the basis of a listening analysis, some musicologists have placed the
boundary a few bars later, in agreement with our analysis [23].

point estimate. Some results are summarised in fig. 3: the
upper four plots show the dynamically evolving subjective
information measures as described in §II-B, computed using
a point estimate of the current transition matrix; the fifth plot
(the ‘model information rate’) shows the information in each
observation about the transition matrix. In [24], we showed
that this ‘model information rate’ is actually a component
of the true IPI when the transition matrix is being learned
online, and was neglected when we computed the IPI from
the transition matrix as if it were a constant.

The peaks of the surprisingness and both components of
the IPI show good correspondence with structure of the piece
both as marked in the score and as analysed by musicologist
Keith Potter, who was asked to mark the six ‘most surprising
moments’ of the piece (shown as asterisks in the fifth plot).
In contrast, the analyses shown in the lower two plots of
fig. 3, obtained using two rule-based music segmentation
algorithms, while clearly reflecting the structure of the piece,
do not segment the piece, with no tendency to peaking of the
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Fig. 4. Metrical analysis by computing average surprisingness and

IPI of notes at different periodicities (i.e. hypothetical bar lengths)
and phases (i.e. positions within a bar).

boundary strength function at the boundaries in the piece.

The complete analysis of Gradus can be found in [19], but
fig. 4 illustrates the result of a metrical analysis: the piece was
divided into bars of 32, 64 and 128 notes. In each case, the
average surprisingness and IPI for the first, second, third etc.
notes in each bar were computed. The plots show that the first
note of each bar is, on average, significantly more surprising
and informative than the others, up to the 64-note level, where
as at the 128-note, level, the dominant periodicity appears to
remain at 64 notes.

B. Real-valued signals and audio analysis

Using analogous definitions based on the differential entropy
[14], the methods outlined in §1I-B and §II-C can be refor-
mulated for random variables taking values in a continuous
domain. Information-dynamic methods may thus be applied
to expressive parameters of music such as dynamics, timing
and timbre, which are readily quantified on a continuous scale.

Dubnov [17] considers the class of stationary Gaussian
processes, for which entropy rate may be obtained analytically
from the power spectral density of the signal. Dubnov found
that the multi-information rate (which he refers to as ‘informa-
tion rate’) can be expressed as a function of the spectral flat-
ness measure. Thus, for a given variance, Gaussian processes
with maximal multi-information rate are those with maximally
non-flat spectra. These essentially consist of a single sinusoidal
component and hence are completely predictable once the
parameters of the sinusoid have been inferred.

We are currently working towards methods for the compu-
tation of predictive information rate in some restricted classes
of Gaussian processes including finite-order autoregressive
models and processes with power-law (or 1/ f) spectra, which
have previously been investegated in relation to their aesthetic
properties [25], [26].

C. Beat Tracking

A probabilistic method for drum tracking was presented by
Robertson [27]. The system infers a beat grid (a sequence
of approximately regular beat times) given audio inputs from
a live drummer, for the purpose of synchronising a music
sequencer with the drummer. The times of kick and snare
drum events are obtained using dedicated microphones for
each drum and a percussive onset detector [28]. These event
times are then sent to the beat tracker, which maintains a
probabilistic belief state in the form of distributions over
the tempo and phase of the beat grid. Every time an event
is received, these distributions are updated with respect to
a probabilistic model which accounts both for tempo and
phase variations and the emission of drum events at musically
plausible times relative to the beat grid.

The use of a probabilistic belief state means we can compute
entropies representing the system’s uncertainty about the beat
grid, and quantify the amount of information in each event
about the beat grid as the KL divergence between prior and
posterior distributions. Though this is not strictly the instanta-
neous predictive information (IPI) as described in §II-B (the
information gained is not directly about future event times),
we can treat it as a proxy for the IPI, in the manner of the
‘model information rate’ described in §III-A, which has a
similar status.

We carried out the analysis on 16 recordings; an example
is shown in fig. 5. There we can see variations in the entropy
in the upper graph and the information in each drum event in
the lower stem plot. At certain points in time, unusually large
amounts of information arrive; these may be related to fills and
other rhythmic irregularities, which are often followed by an
emphatic return to a steady beat at the beginning of the next
bar—this is something we are currently investigating. We also
analysed the pattern of information flow on a cyclic metre,
much as in fig. 4. All the recordings we analysed are audibly
in 4/4 metre, but we found no evidence of a general tendency
for greater amounts of information to arrive at metrically
strong beats, which suggests that the rhythmic accuracy of
the drummers does not vary systematically across each bar. It
is possible that metrical information existing in the pattern of
kick and snare events might emerge in an information dynamic
analysis using a model that attempts to predict the time and
type of the next drum event, rather than just inferring the beat
grid as the current model does.

IV. INFORMATION DYNAMICS AS COMPOSITIONAL AID

The use of stochastic processes in music composition has
been widespread for decades—for instance lannis Xenakis
applied probabilistic mathematical models to the creation of
musical materials [29]. While such processes can drive the
generative phase of the creative process, information dynamics
can serve as a novel framework for a selective phase, by
providing a set of criteria to be used in judging which
of the generated materials are of value. This alternation of
generative and selective phases as been noted before [30].
Information-dynamic criteria can also be used as constraints
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to the sequence of detected kick and snare drum events. The grey line show the system’s varying level of uncertainty (entropy) about the
tempo and phase of the beat grid, while the stem plot shows the amount of information in each drum event about the beat grid. The entropy
drops instantaneously at each event and rises gradually between events.

on the generative processes, for example, by specifying a
certain temporal profile of suprisingness and uncertainty the
composer wishes to induce in the listener as the piece unfolds.

In particular, the behaviour of the predictive information
rate (PIR) defined in § II-C make it interesting from a compo-
sitional point of view. The definition of the PIR is such that it
is low both for extremely regular processes, such as constant or
periodic sequences, and low for extremely random processes,
where each symbol is chosen independently of the others, in
a kind of ‘white noise’. In the former case, the pattern, once
established, is completely predictable and therefore there is
no new information in subsequent observations. In the latter
case, the randomness and independence of all elements of
the sequence means that, though potentially surprising, each
observation carries no information about the ones to come.

Processes with high PIR maintain a certain kind of balance
between predictability and unpredictability in such a way
that the observer must continually pay attention to each new
observation as it occurs in order to make the best possible
predictions about the evolution of the seqeunce. This balance
between predictability and unpredictability is reminiscent of
the inverted ‘U’ shape of the Wundt curve (see fig. 6), which
summarises the observations of Wundt [31] that stimuli are
most pleasing at intermediate levels of novelty or disorder,
where there is a balance between ‘order’ and ‘chaos’.

Using the methods of §II-D, we found [19] a similar
shape when plotting entropy rate againt PIR—this is visible
in the upper envelope of the scatter plot in fig. 7, which
is a 3-D scatter plot of three of the information measures
discussed in §II-C for several thousand first-order Markov
chain transition matrices generated by a random sampling
method. The coordinates of the ‘information space’ are entropy
rate (h,), redundancy (p,), and predictive information rate
(b,). The points along the ‘redundancy’ axis correspond to pe-
riodic Markov chains. Those along the ‘entropy’ axis produce
uncorrelated sequences with no temporal structure. Processes
with high PIR are to be found at intermediate levels of entropy
and redundancy. These observations led us to construct the
‘Melody Triangle’, a graphical interface for exploring the
melodic patterns generated by each of the Markov chains
represented as points in fig. 7.
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Fig. 6. The Wundt curve relating randomness/complexity with
perceived value. Repeated exposure sometimes results in a move to
the left along the curve [13].

A. The Melody Triangle

The Melody Triangle is an interface for the discovery
of melodic materials, where the input—positions within a
triangle—directly map to information theoretic properties of
the output.

The triangle is populated with first order Markov chain
transition matrices as illustrated in fig. 7. The distribution of
transition matrices in this space forms a relatively thin curved
sheet. Thus, it is a reasonable simplification to project out
the third dimension (the PIR) and present an interface that
is just two dimensional. The right-angled triangle is rotated,
reflected and stretched to form an equilateral triangle with the
hy =0, p, = 0 vertex at the top, the ‘redundancy’ axis down
the left-hand side, and the ‘entropy rate’ axis down the right,
as shown in fig. 8. This is our ‘Melody Triangle’ and forms the
interface by which the system is controlled. The user selects a
point within the triangle, this is mapped into the information
space and the nearest transition matrix is used to generate a
sequence of values which are then sonified either as pitched
notes or percussive sounds. By choosing the position within
the triangle, the user can control the output at the level of
its ‘collative’ properties, with access to the variety of patterns
as described above and in §II-D. Though the interface is 2D,
the third dimension (PIR) is implicitly present, as transition
matrices retrieved from along the centre line of the triangle
will tend to have higher PIR. We hypothesise that, under
the appropriate conditions, these will be perceived as more
‘interesting’ or ‘melodic.’

The Melody Triangle exists in two incarnations: a screen-
based interface where a user moves tokens in and around a
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of entropy rate (h,), redundancy (p,) and PIR (b,), all in bits.
The concentrations of points along the redundancy axis correspond
to Markov chains which are roughly periodic with periods of 2
(redundancy 1 bit), 3, 4, etc. all the way to period 7 (redundancy
2.8 bits). The colour of each point represents its PIR—note that the
highest values are found at intermediate entropy and redundancy, and
that the distribution as a whole makes a curved triangle. Although
not visible in this plot, it is largely hollow in the middle.

triangle on screen, and a multi-user interactive installation
where a Kinect camera tracks individuals in a space and maps
their positions in physical space to the triangle. In the latter
each visitor that enters the installation generates a melody
and can collaborate with their co-visitors to generate musical
textures. This makes the interaction physically engaging and
(as our experience with visitors both young and old has
demonstrated) more playful.

The screen based interface can serve as a compositional tool.
A number of tokens, each representing a sonification stream
or ‘voice’, can be dragged in and around the triangle. For
each token, a sequence of symbols is sampled using the cor-
responding transition matrix, which are then mapped to notes
of a scale or percussive sounds'. Keyboard commands give
control over other musical parameters such as pitch register
and inter-onset interval. The system is capable of generating
quite intricate musical textures when multiple tokens are in the
triangle, but unlike other computer aided composition tools or
programming environments, the composer excercises control
at the abstract level of information-dynamic properties.

B. User trials with the Melody Triangle

We are currently in the process of using the screen-based
Melody Triangle user interface to investigate the relationship
between the information-dynamic characteristics of sonified
Markov chains and subjective musical preference. We carried
out a pilot study with six participants, who were asked to use
a simplified form of the user interface (a single controllable
token, and no rhythmic, registral or timbral controls) under
two conditions: one where a single sequence was sonified
under user control, and another where an additional sequence
was sonified in a different register, as if generated by a fixed

IThe sampled sequence could easily be mapped to other musical processes,
possibly over different time scales, such as chords, dynamics and timbres. It
would also be possible to map the symbols to visual or other outputs.

High Predictive Information Rate

Low Predictive Information Rate

|l

Repetition

The Melody Triangle

Fig. 8.

invisible token in one of four regions of the triangle. In
addition, subjects were asked to press a key if they ‘liked’
what they were hearing.

We recorded subjects’ behaviour as well as points which
they marked with a key press. Some results for two of the
subjects are shown in fig. 9. Though we have not been able
to detect any systematic across-subjects preference for any
particular region of the triangle, subjects do seem to exhibit
distinct kinds of exploratory behaviour. Our initial hypothesis,
that subjects would linger longer in regions of the triangle
that produced aesthetically preferable sequences, and that this
would tend to be towards the centre line of the triangle for all
subjects, was not confirmed. However, it is possible that the
design of the experiment encouraged an initial exploration of
the space (sometimes very systematic, as for subject c) aimed
at understanding how the system works, rather than finding
musical patterns. It is also possible that the system encourages
users to create musically interesting output by moving the
token, rather than finding a particular spot in the triangle which
produces a musically interesting sequence by itself.

Comments collected from the subjects suggest that the
information-dynamic characteristics of the patterns were read-
ily apparent to most: several noticed the main organisation of
the triangle, with repetetive notes at the top, cyclic patterns
along one edge, and unpredictable notes towards the opposite
corner. Some described their systematic exploration of the
space. Two felt that the right side was ‘more controllable’ than
the left (a consequence of their ability to return to a particular
distinctive pattern and recognise it as one heard previously).
Two reported that they became bored towards the end, but
another felt there wasn’t enough time to ‘hear out’ the patterns
properly. One subject did not ‘enjoy’ the patterns in the lower
region, but another said the lower central regions were more
‘melodic’ and ‘interesting’.

We plan to continue the trials with a slightly less restricted
user interface in order make the experience more enjoyable
and thereby give subjects longer to use the interface; this may
allow them to get beyond the initial exploratory phase and
give a clearer picture of their aesthetic preferences. In addition,
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Fig. 9. Dwell times and mark positions from user trials with the
on-screen Melody Triangle interface, for two subjects. The left-hand
column shows the positions in a 2D information space (entropy rate
vs multi-information rate in bits) where each spent their time; the area
of each circle is proportional to the time spent there. The right-hand
column shows point which subjects ‘liked’; the area of the circles
here is proportional to the duration spent at that point before the
point was marked.

we plan to conduct a study under more restrictive conditions,
where subjects will have no control over the patterns other than
to signal (a) which of two alternatives they prefer in a forced
choice paradigm, and (b) when they are bored of listening to
a given sequence.

V. CONCLUSIONS

We have looked at several emerging areas of application of
the methods and ideas of information dynamics to various
problems in music analysis, perception and cognition, includ-
ing musicological analysis of symbolic music, audio analysis,
rhythm processing and compositional and creative tasks. The
approach has proved successful in musicological analysis, and
though our initial data on rhythm processing and aesthetic
preference are inconclusive, there is still plenty of work to be
done in this area: where-ever there are probabilistic models,
information dynamics can shed light on their behaviour.
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