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‘Unfoldingness’

Music is experienced as a

phenomenon that ‘unfolds’ in
time, rather than being apprehended as a static object presented in
its entirety.

[This is recognised in computation linguistics where the
phenomenon is known as incrementality, e.g. in incremental
parsing.]

Meyer [Mey67] argued that musical experience depends on how we
change and revise our conceptions as events happen, on how
expectation and prediction interact with occurrence, and that, to a
large degree, the way to understand the effect of music is to focus
on this ‘kinetics’ of expectation and surprise.
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Expectation and suprise in music

Music creates expectations of what is to come next, which may be
fulfilled immediately, after some delay, or not at all. Suggested by
music theorists, e.g. L. B. Meyer [Mey67] and Narmour [Nar77] but
also noted much earlier by Hanslick [Han86] in the 1850s:

‘The most important factor in the mental process which
accompanies the act of listening to music, and which converts
it to a source of pleasure, is . . . the intellectual satisfaction
which the listener derives from continually following and
anticipating the composer’s intentions—now, to see his
expectations fulfilled, and now, to find himself agreeably
mistaken. It is a matter of course that this intellectual flux and
reflux, this perpetual giving and receiving takes place
unconsciously, and with the rapidity of lightning-flashes.’
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Probabilistic reasoning

Making predictions and assessing surprise is essentially reasoning
with degrees of belief and (arguably) the best way to do this is using
Bayesian probability theory [Cox46, Jay88].

[NB. this is subjective probability as advocated by e.g. De Finetti
and Jaynes.]

We suppose that familiarity with different styles of music takes the
form of various probabilistic models, and that these models are
adapted through listening.

Experimental evidence that humans are able to internalise
statistical knowledge about musical: [SJAN99, ETK02]; and also
that statistical models are effective for computational analysis of
music, e.g. [CW95, Pea05].
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Music and information theory

With probabilistic models in hand we can apply quantitative
information theory: we can compute entropies, relative entropies,
mutual information, and all that.

Lots of interest in application of information theory to perception,
music and aesthetics since the 50s, e.g. Moles [Mol66], Meyer
[Mey67], Cohen [Coh62], Berlyne [Ber71]. (See also Bense, Hiller)

Idea is that subjective qualities and states like uncertainty, surprise,
complexity, tension, and interestingness are determined by
information-theoretic quantities.

Berlyne [Ber71] called such quantities ‘collative variables’, since
they are to do with patterns of occurrence rather than
medium-specific details. Information aesthetics.
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Probabilistic model-based observer hypothesis

• As we listen, we maintain a probabilistic model that enables us
to make predictions. As events unfold, we revise our
probabilistic ‘belief state’, including predictions about the
future.

• Probability distributions and changes in distributions are
characterised in terms of information theoretic-measures such
as entropy and relative entropy (KL divergence).

• The dynamic evolution of these information measures captures
significant structure, e.g. events that are surprising,
informative, explanatory etc.
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Features of information dynamics

Abstraction: sensitive mainly to patterns of occurence, rather than
details of which specific things occur or the sensory medium.

Generality: applicable in principle to any probabilistic model, in
particular, models with time-dependent latent variables such as
HMMs. Many important musical concepts like key, harmony, and
beat are essentially ‘hidden variables’.

Richness: when applied to models with latent variables, can result
in many-layered analysis, capturing information flow about harmony,
tempo, etc.

Subjectivity: all probabilities are subjective probabilities relative to
observer’s model, which can depend on observer’s capabilities and
prior experience.
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Information theory primer · Entropy

Let X be a discrete-valued random (in the sense of subjective
probability) variable. Entropy is a measure of uncertainty. If
observer expects to see x with probability p(x), then

H(X) =
∑
x∈X
−p(x) log p(x)

= E [− log p(X)].

Consider − log p(x) as the ‘surprisingness’ of x, then the entropy is
the ‘expected surprisingness’. High for spread out distributions and
low for concentrated ones.
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Information theory primer · Relative entropy

Relative entropy or Kullback-Leibler (KL) divergence quantifies
difference between probability distributions. If observer receives
data D, divergence between (subjective) prior and posterior
distributions is the amount of information in D about X for this
observer:

I(D → X) = D(pX|D||pX) =
∑
x∈X

p(x|D) log
p(x|D)

p(x)
.

If observing D causes a large change in belief about X , then D
contained a lot of information about X .

Like Lindley’s (1956) information (thanks Lars!).
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Information theory primer · Mutual information

Mutual information between (MI) X1 and X2 is the expected
amount of information about X2 in an observation of X1. Can be
written in several ways:

I(X1;X2) =
∑
x1,x2

p(x1, x2) log
p(x1, x2)

p(x1)p(x2)

= H(X1) +H(X2)−H(X1, X2)

= H(X2)−H(X2|X1).

(1) Expected information about X2 in an observation of X1;
(2) Expected reduction in uncertainty about X2 after observing X1;
(3) Symmetric: I(X1;X2) = I(X2;X1).
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Information theory primer · Conditional MI

Information in one variable about another given observations of
some third variable. Formulated analogously by adding conditioning
variables to entropies:

I(X1;X2|X3) = H(X1|X3)−H(X1|X2, X3).

Makes explicit the dependence of information assessment on
background knowledge, represented by conditioning variables.
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Information theory primer · I-Diagrams

Information diagrams are a Venn diagram-like represention of
entropies and mutual informations for a set of random variables.

I3|12

I1|23

I2|13
I23|1

I13|2I12|3
I123

X1

X2 X3

I1|23 = H(X1|X2, X3)

I13|2 = I(X1;X3|X2)

I1|23 + I13|2 = H(X1|X2)

I12|3 + I123 = I(X1;X2)

The areas of the three circles represent H(X1), H(X2) and H(X3)
respectively. The total shaded area is the joint entropy
H(X1, X2, X3). Each undivided region is an atom of the I-diagram.
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Information theory in sequences

Consider an observer receiving elements of a random sequence
(. . . , X−1, X0, X1, X2, . . .), so that at any time t there is a ‘present’
Xt, an observed pasti

←
Xt, and an unobserved future

→
Xt. Eg, at

time t = 3:

· · · X1 X2 X3 X4 X5 · · ·

Past:
←
X3 Future

→
X3Present

Consider how the observer’s belief state evolves when, having
observed up to X2, it learns the value of X3.
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‘Surprise’ based quantities

To obtain first set of measures, we ignore the future
→
Xt and

consider the probability distribution for Xt give the observed past
←
Xt =

←
x t.

1 Surprisingness: negative log-probability `t = − log p(xt|
←
x t).

2 Expected surprisingness given context
←
X =

←
x t is the entropy

of the predictive distribution, H(Xt|
←
Xt=

←
x t): uncertainty

about Xt before the observation is made.
3 Expectation over all possible realisations of process is the

conditional entropy H(Xt|
←
Xt) according to the observer’s

model. For stationary process, is entropy rate hµ.
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Predictive information

Second set of measures based on amount of information the
observation Xt=xt carries about about the unobserved future

→
Xt,

given that we already know the past
←
Xt=

←
x t: is

It = I(Xt=xt →
→
Xt|

←
Xt=

←
x t).

Is KL divergence between beliefs about future
→
Xt prior and posterior

to observation Xt=xt. Hence, for continuous valued variables,
invariant to invertible transformations of the observation spaces.
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Predictive information based quantities

1 Instantaneous predictive information (IPI) is just It.

2 Expectation of It before observation at time t is
I(Xt;

→
Xt|

←
Xt=

←
x t): mutual information conditioned on

observed past. Is the amount of new information about the
future expected from the next observation. Useful for directing
attention towards the next event even before it happens?

3 Expectation over all possible realisations is the conditional
mutual information I(Xt;

→
Xt|

←
Xt). For stationary process, this

is the global predictive information rate (PIR), the average rate
at which new information arrives about the future. In terms of
conditional entropies, has two forms:
H(
→
Xt|

←
Xt)−H(

→
Xt|Xt,

←
Xt) or H(Xt|

←
Xt)−H(Xt|

→
Xt,

←
Xt).
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Global measures for stationary processes

For a stationary random process model, the average levels of
suprise and information are captured by the time-shift invariant
process information measures:

entropy rate : hµ = H(Xt|
←
Xt)

multi-information rate : ρµ = I(
←
Xt;Xt) = H(Xt)− hµ

residual entropy rate : rµ = H(Xt|
←
Xt,

→
Xt)

predictive information rate : bµ = I(Xt;
→
Xt|

←
Xt) = hµ − rµ

Residual entropy also known as erasure entropy [VW06].

20/55



Process I-diagrams

hµρµ

X0

infinite
past

. . . , X−1

rµ

bµρµ

X0

infinite
future

infinite
past

. . . , X−1 X1, . . .

Marginal entropy of ‘present’ X0 is H(X0) = ρµ + rµ + bµ.
Entropy rate is hµ = rµ + bµ.
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Markov chains · Definitions
Let X be a Markov chain with state space {1, . . . ,K}, i.e. the Xt

take values from 1 to K.

X1 X2 X3 X4 · · ·

Parameterised by transition matrix a ∈ RK×K , i.e.
p(Xt+1= i|Xt=j) = aij . Assume irreducibility, ergodicity etc. to
ensure uniqueness of stationary distribution π such that
p(Xt= i) = πai independent of t. Entropy rate as a function of a is

h(a) =

K∑
j=1

πaj

K∑
i=1

−aij log aij .
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Markov chains · PIR

Predictive information rate for first order chains comes out in terms
of entropy rate function as

bµ = h(a2)− h(a),

where a2 is two-step transition matrix.

Can be generalised to higher-order transition matrices

bµ = h(âN+1)−Nh(â),

where N is the order of the chain and â is a sparse KN ×KN

transition matrix over product state space of N consecutive
observations (step size 1).
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Entropy rate and PIR in Markov chains

0 1
0

0.2

0.4

0.6

0.8

entropy rate

pr
ed

 in
fo

 r
at

e

a

b

c
d

transmat (a) transmat (b)

transmat (c) transmat (d)

For given K, entropy rate varies between 0 (deterministic sequence)
and logK when aij = 1/K for all i, j. Space of transition matrices
explored by generating them at random and plotting entropy rate vs
PIR. (Note inverted ‘U’ relationship).
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Samples from processes with different PIR

sequence (a)

sequence (b)

sequence (c)

sequence (d)

Sequence (a) is repetition of state 4 (see transmat (a) on previous
slide). System (b) has the highest PIR.
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Complexity and interestingness: the Wundt Curve

Studies looking into the relationship between stochastic complexity
(usually measured as entropy or entropy rate) and aesthetic value,
reveal an inverted ‘U’ shaped curve [Ber71]. (Also, Wundt curve
[Wun97]). Repeated exposure tends to move stimuli leftwards.

deterministic random

boring,
predictable

incoherent,
unstructured

'g
o
o
d
n
e
ss
'

just right Explanations for this usually
appeal to a need for a
‘balance’ between order and
chaos, unity and diversity,
and so on, in a generally
imprecise way.
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PIR as a measure of cognitive activity
The predictive information rate incorporates a similar balance
automatically: is maximal for sequences which are neither
deterministic nor totally uncorrelated across time.

too predictable:

intermediate:

too random:

(Black: observed; red: unobserved; paler: greater uncertainty.) Our
interpretation: Things are ‘interesting’ or at least ‘salient’ when
each new part supplies new information about parts to come.
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The Melody Triangle · Information space
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Population of transition matrices in 3D space of hµ, ρµ and bµ.
Colour of each point represents PIR. Shape is mostly (not
completely) hollow inside: forming roughly a curved triangular sheet.
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The Melody Triangle · User interface

Allows user to place tokens in the triangle to cause sonification of a
Markov chain with corresponding information ‘coordinate’.
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Subjective information
So far we’ve assumed that sequence is actually sampled from from
a stationary Markov chain with a transition matrix known to the
observer. This means time averages of IPI and surprise should
equal expectations.

What if sequence is sampled from some other Markov chain, or is
produced by some unknown process?

• In general, it may be impossible to identify any ‘true’ model.
There are no ‘objective’ probabilities; only subjective ones, as
argued by de Finetti [dF75].

• If sequence is sampled from some Markov chain, we can
compute (time) averages of observer’s average subjective
surprise and PI and also track what happens if observer
gradually learns the transition matrix from the data.
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Effect of learning on information dynamics
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(a/b/e/f): multiple runs starting from same initial condition but
using different generative transition matrices. (c/d/g/h): multiple
runs starting from different initial conditions and converging on
transition matrices with (c/g) high and (d/h) low PIR.
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Exchangeable sequences and parametric models

De Finetti’s theorem says that an exchangeable random process
can be represented as a sequence variables which are iid given
some hidden probability distribution, which we can think of as a
parameterised model:

Θ

X1 X2 X3 . . .

Observer’s belief state at time
t includes probability
distribution over the
parameters p(Θ=θ|

←
Xt=

←
x t).

Each observation causes revision of belief state and hence supplies
information I(Xt=xt → Θ|

←
Xt=

←
x t) about Θ: In previous work we

called this the ‘model information rate’. (Same as Haussler and
Opper’s [HO95] IIG or Itti and Baldi’s [IB05] Bayesian surprise.)
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IIG equals IPI in (some) XRPs

Mild assumptions yield a
relationship between IIG
(instantaneous information gain)
and IPI. (Everything here implicitly
conditioned on

←
Xt). Xt

→
Xt

Θ

1 Xt ⊥
→
Xt|Θ: observations iid given Θ for XRPs;

2 Θ ⊥ Xt|
→
Xt: assumption that Xt adds no new information

about Θ given infinitely long sequence
→
Xt = Xt+1:∞.

Hence, I(Xt; Θt|
←
Xt) = I(Xt;

→
Xt|

←
Xt) = It.

Can drop assumption 1 and still get I(Xt; Θt|
←
Xt) as an additive

component (lower bound) of It.
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Discrete-time Gaussian processes

Information-theoretic quantities used earlier have analogues for
continuous-valued random variables. For stationary Gaussian
processes, we can obtain results in terms of the power spectral
density S(ω), (which for discrete time is periodic in ω with period
2π). Standard methods give

H(Xt) =
1

2

(
log 2πe+ log

1

2π

∫ π

−π
S(ω) dω

)
,

hµ =
1

2

(
log 2πe+

1

2π

∫ π

−π
logS(ω) dω

)
,

ρµ =
1

2

(
log

1

2π

∫ π

−π
S(ω) dω − 1

2π

∫ π

−π
logS(ω) dω

)
.

Entropy rate is also known as Kolmogorov-Sinai entropy.
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PIR/Multi-information duality
Analysis yeilds PIR:

bµ =
1

2

(
log

1

2π

∫ π

−π

1

S(ω)
dω − 1

2π

∫ π

−π
log

1

S(ω)
dω

)
.

Yields simple expression for finite-order autogregressive processes,
but beware: can diverge for moving average processes!

Compare with multi-information rate:

ρµ =
1

2

(
log

1

2π

∫ π

−π
S(ω) dω − 1

2π

∫ π

−π
logS(ω) dω

)
.

Yields simple expression for finite-order moving-average processes,
but can diverge for marginally stable autogregressive processes.

Infinities are troublesome and point to problem with notion of
infinitely precise observation of continuous-valued variables.
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Material and Methods

We took two pieces of minimalist music by Philip Glass, Two Pages
(1969) and Gradus (1968). Both monophonic and isochronous, so
representable very simply as a sequence of symbols (notes), one
symbol per beat, yet remain ecologically valid examples of ‘real’
music.

We use an elaboration of the Markov chain model—not necessarily a
good model per se, but that wasn’t the point of the experiment.
Markov chain model was chosen as it is tractable from and
information dynamics point of view while not being completely
trivial.
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Time-varying transition matrix model
We allow transition matrix to vary slowly with time to track changes
in the sequence structure. Hence, observer’s belief state includes a
probabilitiy distribution over transition matrices; we choose a
product of Dirichlet distributions:

p(a|θ) =
∏K
j=1 pDir(a:j |θ:j),

where a:j is j th column of a and θ is an K ×K parameter matrix.

At each time step, distribution first spreads under mapping

θij 7→
βθij

(β + θij)

to model possibility that transition matrix has changed (β = 2500 in
our experiments). Then it contracts due to new observation
providing fresh evidence about transition matrix.
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Two Pages · Results
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Thick lines: part
boundaries as
indicated by Glass;
grey lines (top four
panels): changes
in the melodic
‘figures’; grey lines
(bottom panel):
six most surprising
moments chosen
by expert listenter.
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Two Pages · Rule based analysis

0

0.1
Local boundary detection model (Cambouropoulos)

0 1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2
Pitch proximity grouping rule 3a (Lerdahl and Jackendoff)

time (in note durations)

Analysis of Two Pages using (top) Cambouropoulos’ Local Boundary
Detection Model (LBDM) and (bottom) Lerdahl and Jackendoff’s
grouping preference rule 3a (GPR3a), which is a function of pitch
proximity. Both analyses indicate ‘boundary strength’.

43/55



Two Pages · Discussion

Correspondence between the information measures and the
structure of the piece is quite close. Good agreement between the
six ‘most surprising moments’ chosen by expert listener and model
information signal.

What appears to be an error in the detection of the major part
boundary (between events 5000 and 6000) actually raises a known
anomaly in the score, where Glass places the boundary several
events before there is any change in the pattern of notes.
Alternative analyses of Two Pages place the boundary in agreement
with peak in our surprisingness signal.
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Gradus · Metrical analysis
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Bayesian beat tracker
Works by maintaining probabilistic belief state about time of next
beat and current tempo.

Now

next beat following beat

Time

beat period

distribution of next event time

Receives categorised drum events (kick or snare) from audio
analysis front-end.
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Information gain in the beat tracker

Each event triggers a change
in belief state, so we can
compute information gain
about beat parameters.

Relationship between IIG and
IPI means we treat it as a
proxy for IPI.

information
gain

before
event

after
event

beat grid parameters
(period and phase)
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Analysis of drum patterns

We analysed 17 recordings of drummers, both playing solo or with a
band. All patterns in were in 4/4.

• Information tends to arrive at beat times: consequence of
structure of model.

• Lots of information seems to arrive after drum fills and breaks
as the drummer reestablishes the beat.

• No consistent pattern of information arrival in relation to
metrical structure, so no obvious metrical structure in
micro-timing of events. However, still possible that metrical
structure might emerge from predictive analysis of drum
pattern.
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Summary

• Dynamic, observer-centric information theory.
• Applicable to any dynamic probabilistic model.
• PIR potentially a measure of complexity.
• Simple analysis for Markov chains and Gaussian processes.
• Applications in music analysis and composition.
• Search for neural correlates is ongoing (that’s another talk. . . ).

Thanks!
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