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Abstract—People take in information when perceiving music.
With it they continually build predictive models of what is going
to happen. There is a relationship between information measures
and how we perceive music. An information theoretic approach to
music cognition is thus a fruitful avenue of research. In this paper,
we review the theoretical foundations of information dynamics
and discuss a few emerging areas of application.

I. INTRODUCTION
A. Expectation and surprise in music

One of the effects of listening to music is to create ex-
pectations of what is to come next, which may be fulfilled
immediately, after some delay, or not at all as the case may
be. This is the thesis put forward by, amongst others, music
theorists L. B. Meyer [1] and Narmour [2], but was recognised
much earlier; for example, it was elegantly put by Hanslick
[3] in the nineteenth century:

‘The most important factor in the mental process
which accompanies the act of listening to music,
and which converts it to a source of pleasure, is
...the intellectual satisfaction which the listener
derives from continually following and anticipating
the composer’s intentions—now, to see his expec-
tations fulfilled, and now, to find himself agreeably
mistaken.

An essential aspect of this is that music is experienced
as a phenomenon that ‘unfolds’ in time, rather than being
apprehended as a static object presented in its entirety. Meyer
argued that musical experience depends on how we change and
revise our conceptions as events happen, on how expectation
and prediction interact with occurrence, and that, to a large
degree, the way to understand the effect of music is to focus
on this ‘kinetics’ of expectation and surprise.

Prediction and expectation are essentially probabilistic con-
cepts and can be treated mathematically using probability
theory. We suppose that when we listen to music, expecta-
tions are created on the basis of our familiarity with various
styles of music and our ability to detect and learn statistical
regularities in the music as they emerge, There is experimental
evidence that human listeners are able to internalise statistical
knowledge about musical structure, e.g. [4], [5], and also that
statistical models can form an effective basis for computational
analysis of music, e.g. [6]-[8].

B. Music and information theory

With a probabilistic framework for music modelling and
prediction in hand, we are in a position to apply Shannon’s
quantitative information theory [9]. The relationship between
information theory and music and art in general has been the
subject of some interest since the 1950s [1], [10]-[14]. The
general thesis is that perceptible qualities and subjective states
like uncertainty, surprise, complexity, tension, and interesting-
ness are closely related to information-theoretic quantities like
entropy, relative entropy, and mutual information. Berlyne [15]
called such quantities ‘collative variables’, since they are to
do with patterns of occurrence rather than medium-specific
details, and developed the ideas of ‘information aesthetics’ in
an experimental setting.

C. Information dynamic approach

Bringing the various strands together, our working hypoth-
esis is that as a listener (to which will refer as ‘it’) listens to
a piece of music, it maintains a dynamically evolving proba-
bilistic model that enables it to make predictions about how
the piece will continue, relying on both its previous experience
of music and the immediate context of the piece. As events
unfold, it revises its probabilistic belief state, which includes
predictive distributions over possible future events. These can
be characterised in terms of a handful of information theoretic-
measures such as entropy and relative entropy. By tracing
the evolution of a these measures, we obtain a representation
which captures much of the significant structure of the music.

One of the consequences of this approach is that regardless
of the details of the sensory input or even which sensory
modality is being processed, the resulting analysis is in terms
of the same units: quantities of information (bits) and rates
of information flow (bits per second). The probabilistic and
information theoretic concepts in terms of which the analysis
is framed are universal to all sorts of data. In addition,
when adaptive probabilistic models are used, expectations are
created mainly in response to to patterns of occurence, rather
the details of which specific things occur. Together, these
suggest that an information dynamic analysis captures a high
level of abstraction, and could be used to make structural
comparisons between different temporal media, such as music,
film, animation, and dance.



Another consequence is that the information dynamic ap-
proach gives us a principled way to address the notion of
subjectivity, since the analysis is dependent on the probability
model the observer starts off with, which may depend on
prior experience or other factors, and which may change over
time. Thus, inter-subject variablity and variation in subjects’
responses over time are fundamental to the theory.

II. THEORETICAL REVIEW
A. Entropy and information

Let X denote some variable whose value is initially un-
known to our hypothetical observer. We will treat X math-
ematically as a random variable, with a value to be drawn
from some set X and a probability distribution representing
the observer’s beliefs about the true value of X. In this case,
the observer’s uncertainty about X can be quantified as the
entropy of the random variable H(X). For a discrete variable
with probability mass function p : X — [0, 1], this is

H(X) =Y —p(x)logp(z),
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The negative-log-probability ¢(x) = —log p(z) of a particular
value = can usefully be thought of as the surprisingness of
the value = should it be observed, and hence the entropy is
the expectation of the surprisingness E ¢(X).

Now suppose that the observer receives some new data D
that causes a revision of its beliefs about X. The information
in this new data about X can be quantified as the Kullback-
Leibler (KL) divergence between the prior and posterior
distributions p(x) and p(x|D) respectively:

Z p(z|D)lo

zeX

p(z|D)
p(x)

When there are multiple variables X, Xo etc. which the
observer believes to be dependent, then the observation of
one may change its beliefs and hence yield information about
the others. The joint and conditional entropies as described in
any textbook on information theory (e.g. [16]) then quantify
the observer’s expected uncertainty about groups of variables
given the values of others. In particular, the mutual information
I(X;; X5) is both the expected information in an observation
of X5 about X; and the expected reduction in uncertainty
about X after observing Xo:

I(X1; Xo) = H(Xy) — H(X41|X2), 3)

where H(X1|X2) = H(X1,X2) — H(X3) is the condi-
tional entropy of Xy given X;. A little algebra shows that
I(X1;X5) = I(X2;X;) and so the mutual information is
symmetric in its arguments. A conditional form of the mutual
information can be formulated analogously:

I(Xl,X2|X3) = H(X1|X3) — H(X1|X2,X3).

Ipx = D(pxpllpx) = 2

“4)

These relationships between the various entropies and mutual
informations are conveniently visualised in Venn diagram-like
information diagrams or I-diagrams [17] such as the one in
fig. 1.

Lj23 = H(X1| X2, X3)
Lz = 1(X1; X3]| X2)
Loz + 132 = H(X1|X>)

Loz + T2z = 1(X1; X2)

Fig. 1. I-diagram visualisation of entropies and mutual informations
for three random variables X1, X2 and X3. The areas of the three
circles represent H(X1), H(X2) and H(X3) respectively. The total
shaded area is the joint entropy H (X1, X2, X3). The central area
I123 is the co-information [18]. Some other information measures
are indicated in the legend.

B. Surprise and information in sequences

Suppose that (..., X_1, Xg, X7,...) is a sequence of ran-
dom variables, infinite in both directions, and that p is the
associated probability measure over all realisations of the
sequence—in the following, p will simply serve as a label
for the process. We can indentify a number of information-
theoretic measures meaningful in the context of a sequential
observation of the sequence, during which, at any time {,
the sequence £f variables can be divided into a ‘prgsent’
X, a ‘past’” Xy = (..., X4—2,X;-1), and a ‘future’ X, =
(Xt41, Xtqo,...). We will write the actually observed value
of X; as xy, and the sequence of observations up to but not
including x; as xt

The in-context surprisingness of the observation X; = xy
depends on both z; and the context :ct

&)

However, before X; is observed to be z;, the observer can
compute the expected surprisingness as a measure of its
uncertainty about the Very next event; this may be written

by =— logp(mt\xt).

as an entropy H (Xt\X = xt) but note that this is conditional

on the event X = xt, not variables X ¢ as in the conventional
conditional entropy.

The Hsurpris.ingness 0y
H(X:| X:= ;t) can be understood as subjective information
dynamic measures, since they are based on the observer’s
probabilityemodel in the context of the actually observed
sequence x;—they characterise what it is like to ‘be in
the observer’s shoes’. If we view the observer as a purely
passive or reactive agent, this would probably be sufficient,
but for active agents such as humans or animals, it is
often necessary to aniticipate future events in order, for
example, to plan the most effective course of action. It makes
sense for such observers to be concerned about the predictive
probability distribution over future events, p(2¢| ). When an
observation X;=x; is made in this context, the instantaneous
predictive information (IP1) Z, at time ¢ is the information in
the event X;=x; about the entlre future of the sequence X t

and expected surprisingness

given the observed past X L= Ty Referring to the definition
of information (2), this is the KL divergence between prior
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Fig. 2. I-diagrams for several information measures in stationary
random processes. Each circle or oval represents a random variable
or sequence of random variables relative to time ¢t = 0. Overlapped
areas correspond to various mutual information as in Fig. 1. In (b), the
circle represents the ‘present’. Its total area is H(Xo) = pu+7u+bu,
where p, is the multi-information rate, r, is the residual entropy
rate, and b, is the predictive information rate. The entropy rate is
hy = r,+b,,. The small dark region below Xq in (¢c)is 0,y = E—py,.

and posterior distributions over possible futures, which written
out in full, is

>
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p(T¢|Ty)

; (6)

p(Z 4|z, 1) log

where the sum is to be taken over the set of infinite sequences
X*. Note that it is quite possible for an event to be surprising
but not informative in predictive sense. As with the surpris-
ingness, the observer can compute its expected IPI at time ¢,

which reduces to a mutual information I (Xt,X t|X = o:t)
conditioned on the observed past. This could be used, for
example, as an estimate of attentional resources which should
be directed at this stream of data, which may be in competition
with other sensory streams.

C. Information measures for stationary random processes

If we step back, out of the observer’s shoes as it were,
and consider the random process (..., X_1, X0, X1,...) as a
statistical ensemble of possible realisations, and furthermore
assume that it is stationary, then it becomes possible to define
a number of information-theoretic measures, closely related to
those described above, but which characterise the process as
a whole, rather than on a moment-by-moment basis. Some of
these, such as the entropy rate, are well-known, but others
are only recently being investigated. (In the following, the
assumption of stationarity means that the measures defined
below are independent of ¢.)

The entropy rate of the process is the entropy of the next
variable X, given all the previous ones.

h = H(X,X,). @)

The entropy rate is a measure of the overall surprisingness
or unpredictability of the process, and gives an indication of
the average level of surprise and uncertainty that would be
experienced by an observer processing a sequence sampled
from the process using the methods of §II-B.

The multi-information rate p, (following Dubnov’s [19]
notation for what he called the ‘information rate’) is the mutual
information between the ‘past’ and the ‘present’:

—
#:I(Xt,Xt):H(Xt)—hM (8)
It is a measure of how much the context of an observation
(that is, the observation of previous elements of the sequence)
helps in predicting or reducing the suprisingness of the current
observation.

The excess entropy [20] is the mutual information between

the entire ‘past’ and the entire ‘future’:

— —
E = I(Xy; X, Xo). (©))

Both the excess entropy and the multi-information rate can be
thought of as measures of redundancy, quantifying the extent
to which the same information is to be found in all parts of
the sequence.

The predictive information rate (or PIR) [21] is the mutual
information between the present and the infinite future given
the infinite past:

- - — “—

bM:I(Xt,Xt|Xt):H(Xt|Xt)—H(Xt|Xt7Xt) (10)
Equation (10) can be read as the average reduction in uncer-
tainty about the future on learning X}, given the past. Due to
the symmetry of the mutual information, it can also be written
as

— — =
bu:H(Xt|Xt)*H(Xt‘Xt7Xt):hu*ma (11)
-

where r, = H(X:| X, Xy), is the residual [22], or erasure
[23] entropy rate. These relationships are illustrated in Fig. 2,
along with several of the information measures we have
discussed so far. The PIR gives an indication of the average
IPI that would be experienced by an observer processing a
sequence sampled from this process.

James et al [24] review several of these information mea-

sures and introduce some new related ones. In particular they

identify the o, = I (X t,X +|X¢), the mutual information
between the past and the future given the present, as an inter-
esting quantity that measures the predictive benefit of model-
building (that is, maintaining an internal state summarising
past observations in order to make better predictions). It is
shown as the small dark region below the circle in fig. 2(c).
By comparing with fig. 2(b), we can see that o, = E' — p,,.



D. First and higher order Markov chains

First order Markov chains are the simplest non-trivial mod-
els to which information dynamics methods can be applied. In
[21] we derived expressions for all the information measures
described in §II-B for irreducible stationary Markov chains
(i.e. that have a unique stationary distribution). The derivation
is greatly simplified by the dependency structure of the Markov
chain: for ihe purpose of the analysis, the ‘past’ and ‘future’

segments Xy and X; can be collapsed to just the previous and
next variables X;_; and X, respectively. We also showed
that the predictive information rate can be expressed simply in
terms of entropy rates: if we let a denote the K x K transition
matrix of a Markov chain over an alphabet of {1, ..., K}, such
that a;; = Pr(X,=1i|X,—1 = j), and let h : REXKE 5 R be
the entropy rate function such that i(a) is the entropy rate of
a Markov chain with transition matrix a, then the predictive
information rate b(a) is

b(a) = h(a®) — h(a), (12)

where a2, the transition matrix squared, is the transition matrix
of the ‘skip one’ Markov chain obtained by jumping two steps
at a time along the original chain.

Second and higher order Markov chains can be treated in a
similar way by transforming to a first order representation of
the high order Markov chain. If we are dealing with an Nth
order model, this is done forming a new alphabet of size KV
consisting of all possible /N-tuples of symbols from the base
alphabet. An observation &, in this new model encodes a block
of N observations (241, ...,z n) from the base model. The
next observation Z;,; encodes the block of N obtained by
shifting the previous block along by one step. The new Markov
of chain is parameterised by a sparse K~ x KN transition
matrix a. Adopting the label p for the order N system, we
obtain:

hy =h(@), b, =h@""") — Nh(a), (13)

where @™V 11 is the (N 4-1)th power of the first order transition
matrix. Other information measures can also be computed for
the high-order Markov chain, including the multi-information
rate p,, and the excess entropy E. These are identical for first
order Markov chains, but for order N chains, E can be up to
N times larger than p,,.

[Something about what kinds of Markov chain maximise
h, (uncorrelated ‘white’ sequences, no temporal structure),
pu and E (periodic) and b,,. We return this in § I'V.]

III. INFORMATION DYNAMICS IN ANALYSIS
A. Musicological Analysis

In [21], methods based on the theory described above were
used to analysis two pieces of music in the minimalist style by
Philip Glass: Two Pages (1969) and Gradus (1968). The anal-
ysis was done using a first-order Markov chain model, with
the enhancement that the transition matrix of the model was
allowed to evolve dynamically as the notes were processed,
and was tracked (in a Bayesian way) as a distribution over
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Fig. 3. Analysis of Two Pages. The thick vertical lines are the part
boundaries as indicated in the score by the composer. The thin grey
lines indicate changes in the melodic ‘figures’ of which the piece is
constructed. In the ‘model information rate’ panel, the black asterisks
mark the six most surprising moments selected by Keith Potter.
The bottom panel shows a rule-based boundary strength analysis
computed using Cambouropoulos’ LBDM. All information measures
are in nats and time is in notes.

possible transition matrices, rather than a point estimate. The
results are summarised in fig. 3: the upper four plots show
the dynamically evolving subjective information measures as
described in §1I-B computed using a point estimate of the
current transition matrix, but the fifth plot (the ‘model infor-
mation rate’) measures the information in each observation
about the transition matrix. In [25], we showed that this ‘model
information rate’ is actually a component of the true IPI in a
time-varying Markov chain, which was neglected when we
computed the IPI from point estimates of the transition matrix
as if the transition probabilities were constant.

The peaks of the surprisingness and both components of
the predictive information show good correspondence with
structure of the piece both as marked in the score and as
analysed by musicologist Keith Potter, who was asked to mark
the six ‘most surprising moments’ of the piece (shown as
asterisks in the fifth plot)!.

In contrast, the analyses shown in the lower two plots

INote that the boundary marked in the score at around note 5,400 is known
to be anomalous; on the basis of a listening analysis, some musicologists [ref]
have placed the boundary a few bars later, in agreement with our analysis.
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Fig. 4. Metrical analysis by computing average surprisingness and

informative of notes at different periodicities (i.e. hypothetical bar
lengths) and phases (i.e. positions within a bar).

of fig. 3, obtained using two rule-based music segmentation
algorithms, while clearly reflecting the structure of the piece,
do not segment the piece, with no tendency to peaking of the
boundary strength function at the boundaries in the piece.

The complete analysis of Gradus can be found in [21], but
fig. 4 illustrates the result of a metrical analysis: the piece was
divided into bars of 32, 64 and 128 notes. In each case, the
average surprisingness and IPI for the first, second, third etc.
notes in each bar were computed. The plots show that the first
note of each bar is, on average, significantly more surprising
and informative than the others, up to the 64-note level, where
as at the 128-note, level, the dominant periodicity appears to
remain at 64 notes.

B. Content analysis/Sound Categorisation

Using analogous definitions of differential entropy, the
methods outlined in the previous section are equally appli-
cable to continuous random variables. In the case of music,
where expressive properties such as dynamics, tempo, timing
and timbre are readily quantified on a continuous scale, the
information dynamic framework thus may also be considered.

In [19], Dubnov considers the class of stationary Gaus-
sian processes. For such processes, the entropy rate may
be obtained analytically from the power spectral density of
the signal, allowing the multi-information rate to be subse-
quently obtained. Local stationarity is assumed, which may
be achieved by windowing or change point detection [26].
mention non-gaussian processes extension Similarly, the pre-
dictive information rate may be computed using a Gaussian
linear formulation CITE. In this view, the PIR is a function
of the correlation between random innovations supplied to the
stochastic process. Dean (2009)

[ Continuous domain information ] [Audio based music
expectation modelling] [ Gaussian processes]

C. Beat Tracking

A probabilistic method for drum tracking was presented by
Robertson [27]. The algorithm is used to synchronise a music
sequencer to a live drummer. The expected beat time of the
sequencer is represented by a click track, and the algorithm
takes as input event times for discrete kick and snare drum
events relative to this click track. These are obtained using
dedicated microphones for each drum and using a percussive
onset detector (Puckette 1998). The drum tracker continually
updates distributions for tempo and phase on receiving a new
event time. We can thus quantify the information contributed
of an event by measuring the difference between the system’s
prior distribution and the posterior distribution using the
Kullback-Leiber divergence.

Here, we have calculated the KL divergence and entropy
for kick and snare events in sixteen files. The analysis of
information rates can be considered subjective, in that it
measures how the drum tracker’s probability distributions
change, and these are contingent upon the model used as
well as external properties in the signal. We expect, however,
that following periods of increased uncertainty, such as fills or
expressive timing, the information contained in an individual
event increases. We also examine whether the information is
dependent upon metrical position.

IV. INFORMATION DYNAMICS AS COMPOSITIONAL AID

The use of stochastic processes in music composition has
been widespread for decades—for instance Iannis Xenakis
applied probabilistic mathematical models to the creation of
musical materials [28]. While such processes can drive the
generative phase of the creative process, information dynamics
can serve as a novel framework for a selective phase, by
providing a set of criteria to be used in judging which of the
generated materials are of value. This alternation of generative
and selective phases as been noted by art theorist Margaret
Boden [29].

Information-dynamic criteria can also be used as constraints
on the generative processes, for example, by specifying a
certain temporal profile of suprisingness and uncertainty the
composer wishes to induce in the listener as the piece unfolds.

The tools of information dynamics provide a way to con-
strain and select musical materials at the level of patterns of
expectation, implication, uncertainty, and predictability. In par-
ticular, the behaviour of the predictive information rate (PIR)
defined in §II-C make it interesting from a compositional
point of view. The definition of the PIR is such that it is
low both for extremely regular processes, such as constant or
periodic sequences, and low for extremely random processes,
where each symbol is chosen independently of the others, in
a kind of ‘white noise’. In the former case, the pattern, once
established, is completely predictable and therefore there is
no new information in subsequent observations. In the latter
case, the randomness and independence of all elements of
the sequence means that, though potentially surprising, each
observation carries no information about the ones to come.
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Fig. 5. The Wundt curve relating randomness/complexity with
perceived value. Repeated exposure sometimes results in a move to
the left along the curve [15].

Processes with high PIR maintain a certain kind of balance
between predictability and unpredictability in such a way
that the observer must continually pay attention to each new
observation as it occurs in order to make the best possible
predictions about the evolution of the seqeunce. This balance
between predictability and unpredictability is reminiscent of
the inverted ‘U’ shape of the Wundt curve (see fig. 5),
which summarises the observations of Wundt that the greatest
aesthetic value in art is to be found at intermediate levels of
disorder, where there is a balance between ‘order’ and ‘chaos’.

Using the methods of §II-D, we found [21] a similar
shape when plotting entropy rate againt PIR—this is visible
in the upper envelope of the scatter plot in fig. 6, which
is a 3-D scatter plot of three of the information measures
discussed in §II-C for several thousand first-order Markov
chain transition matrices generated by a random sampling
method. The coordinates of the ‘information space’ are entropy
rate (h,), redundancy (p,), and predictive information rate
(b,). The points along the ’redundancy’ axis correspond to
periodic Markov chains. Those along the ‘entropy’ produce
uncorrelated sequences with no temporal structure. Processes
with high PIR are to be found at intermediate levels of entropy
and redundancy. These observations led us to construct the
‘Melody Triangle’ as a graphical interface for exploring the
melodic patterns generated by each of the Markov chains
represented as points in fig. 6.

A. The Melody Triangle

The Melody Triangle is an exploratory interface for the dis-
covery of melodic content, where the input—positions within
a triangle—directly map to information theoretic measures
of the output. The measures—entropy rate, redundancy and
predictive information rate—form a criteria with which to
filter the output of the stochastic processes used to generate
sequences of notes. These measures address notions of expec-
tation and surprise in music, and as such the Melody Triangle
is a means of interfacing with a generative process in terms
of the predictability of its output.

The triangle is ‘populated’ with first order Markov chain
transition matrices as illustrated in fig. 6.

The distribution of transition matrices plotted in this space
forms an arch shape that is fairly thin. It thus becomes a
reasonable approximation to pretend that it is just a sheet in
two dimensions; and so we stretch out this curved arc into a flat
triangle. It is this triangular sheet that is our ‘Melody Triangle’

pred-info rate

entropy rate

redundancy

Fig. 6. The population of transition matrices distributed along three
axes of redundancy, entropy rate and predictive information rate (all
measured in bits). The concentrations of points along the redundancy
axis correspond to Markov chains which are roughly periodic with
periods of 2 (redundancy 1 bit), 3, 4, etc. all the way to period 8
(redundancy 3 bits). The colour of each point represents its PIR—
note that the highest values are found at intermediate entropy and
redundancy, and that the distribution as a whole makes a curved
triangle. Although not visible in this plot, it is largely hollow in the
middle.

and forms the interface by which the system is controlled.
Using this interface thus involves a mapping to information
space; a user selects a position within the triangle, and a
corresponding transition matrix is returned. Fig. 7 shows how
the triangle maps to different measures of redundancy, entropy
rate and predictive information rate.

Each corner corresponds to three different extremes of pre-
dictability and unpredictability, which could be loosely char-
acterised as ‘periodicity’, ‘noise’ and ‘repetition’. Melodies
from the ‘noise’ corner have no discernible pattern; they have
high entropy rate, low predictive information rate and low
redundancy. These melodies are essentially totally random.
A melody along the ‘periodicity’ to ‘repetition’ edge are
all deterministic loops that get shorter as we approach the
‘repetition’ corner, until it becomes just one repeating note.
It is the areas in between the extremes that provide the more
‘interesting’ melodies. These melodies have some level of un-
predictability, but are not completely random. Or, conversely,
are predictable, but not entirely so.

The Melody Triangle exists in two incarnations; a standard
screen based interface where a user moves tokens in and
around a triangle on screen, and a multi-user interactive
installation where a Kinect camera tracks individuals in a
space and maps their positions in physical space to the triangle.
In the latter each visitor that enters the installation generates a
melody and can collaborate with their co-visitors to generate
musical textures—a playful yet informative way to explore
expectation and surprise in music. Additionally visitors can
change the tempo, register, instrumentation and periodicity of
their melody with body gestures.

As a screen based interface the Melody Triangle can serve
as a composition tool. A triangle is drawn on the screen,
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Fig. 7. The Melody Triangle

screen space thus mapped to the statistical space of the Melody
Triangle. A number of tokens, each representing a melody,
can be dragged in and around the triangle. For each token, a
sequence of symbols with statistical properties that correspond
to the token’s position is generated. These symbols are then
mapped to notes of a scale’. Additionally keyboard commands
give control over other musical parameters.

The Melody Triangle can generate intricate musical textures
when multiple tokens are in the triangle. Unlike other com-
puter aided composition tools or programming environments,
here the composer engages with music on a high and abstract
level; the interface relating to subjective expectation and
predictability.

B. Information Dynamics as Evaluative Feedback Mechanism

Information measures on a stream of symbols can form
a feedback mechanism; a rudimentary ‘critic’ of sorts. For
instance symbol by symbol measure of predictive information
rate, entropy rate and redundancy could tell us if a stream of
symbols is currently ‘boring’, either because it is too repetitive,
or because it is too chaotic. Such feedback would be oblivious
to long term and large scale structures and any cultural norms
(such as style conventions), but nonetheless could provide a
composer with valuable insight on the short term properties
of a work. This could not only be used for the evaluation
of pre-composed streams of symbols, but could also provide
real-time feedback in an improvisatory setup.

V. MUSICAL PREFERENCE AND INFORMATION DYNAMICS

We are carrying out a study to investigate the relationship
between musical preference and the information dynamics

2However they could just as well be mapped to any other property, such
as intervals, chords, dynamics and timbres. It is even possible to map the
symbols to non-sonic outputs, such as colours. The possibilities afforded by
the Melody Triangle in these other domains remains to be investigated.
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Fig. 8. Dwell times and mark positions from user trials with the
on-screen Melody Triangle interface. The left-hand column shows
the positions in a 2D information space (entropy rate vs multi-
information rate in bits) where spent their time; the area of each
circle is proportional to the time spent there. The right-hand column
shows point which subjects ‘liked’.

models, the experimental interface a simplified version of
the screen-based Melody Triangle. Participants are asked to
use this music pattern generator under various experimental
conditions in a composition task. The data collected includes
usage statistics of the system: where in the triangle they place
the tokens, how long they leave them there and the state of
the system when users, by pressing a key, indicate that they
like what they are hearing. As such the experiments will help
us identify any correlation between the information theoretic
properties of a stream and its perceived aesthetic worth.



Some initial results for four subjects are shown in fig. 8.
Though subjects seem to exhibit distinct kinds of exploratory
behaviour, we have not been able to show any systematic
across-subjects preference for any particular region of the
triangle.

Subjects’ comments: several noticed the main organisation
of the triangle: repetative notes at the top, cyclic patters along
the right edge, and unpredictable notes towards the bottom
left (a,c,f). Some did systematic exploration. Felt that the
right side was more ‘controllable’ than the left (a,f)—a direct
consequence of their ability to return to a particular periodic
pattern and recognise at as one heard previously. Some (a,e)
felt the trial was too long and became bored towards the end.
One subject (f) felt there wasn’t enough time to get to hear out
the patterns properly. One subject (b) didn’t enjoy the lower
region whereas another (d) said the lower regions were more
‘melodic’ and ‘interesting’.

VI. CONCLUSION

We outlined our information dynamics approach to the
modelling of the perception of music. This approach models
the subjective assessments of an observer that updates its
probabilistic model of a process dynamically as events unfold.
We outlined ‘time-varying’ information measures, including
a novel ‘predictive information rate’ that characterises the
surprisingness and predictability of musical patterns.

We have outlined how information dynamics can serve in
three different forms of analysis; musicological analysis, sound
categorisation and beat tracking.

We have described the ‘Melody Triangle’, a novel system
that enables a user/composer to discover musical content in
terms of the information theoretic properties of the output, and
considered how information dynamics could be used to pro-
vide evaluative feedback on a composition or improvisation.
Finally we outline a pilot study that used the Melody Triangle
as an experimental interface to help determine if there are
any correlations between aesthetic preference and information
dynamics measures.
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