Mercurial > hg > chp
changeset 6:e9b629578488
Default value fixes, docs etc
author | Chris Cannam |
---|---|
date | Mon, 10 Mar 2014 14:51:09 +0000 |
parents | d2f7a8295671 |
children | f5b9bae2a8c3 5fb59edfab99 |
files | ConstrainedHarmonicPeak.cpp |
diffstat | 1 files changed, 38 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/ConstrainedHarmonicPeak.cpp Fri Mar 07 16:21:22 2014 +0000 +++ b/ConstrainedHarmonicPeak.cpp Mon Mar 10 14:51:09 2014 +0000 @@ -12,7 +12,7 @@ Plugin(inputSampleRate), m_fftSize(0), m_minFreq(0), - m_maxFreq(inputSampleRate/2), + m_maxFreq(22050), m_harmonics(5) { } @@ -36,8 +36,7 @@ string ConstrainedHarmonicPeak::getDescription() const { - //!!! Return something helpful here! - return ""; + return "Return the interpolated peak frequency of a harmonic product spectrum within a given frequency range"; } string @@ -96,7 +95,7 @@ ParameterDescriptor d; d.identifier = "minfreq"; d.name = "Minimum frequency"; - d.description = ""; + d.description = "Minimum frequency for peak finding. Will be rounded down to the nearest spectral bin."; d.unit = "Hz"; d.minValue = 0; d.maxValue = m_inputSampleRate/2; @@ -106,11 +105,11 @@ d.identifier = "maxfreq"; d.name = "Maximum frequency"; - d.description = ""; + d.description = "Maximum frequency for peak finding. Will be rounded up to the nearest spectral bin."; d.unit = "Hz"; d.minValue = 0; d.maxValue = m_inputSampleRate/2; - d.defaultValue = 0; + d.defaultValue = 22050; d.isQuantized = false; list.push_back(d); @@ -179,7 +178,7 @@ OutputDescriptor d; d.identifier = "peak"; d.name = "Peak frequency"; - d.description = ""; + d.description = "Interpolated frequency of the harmonic spectral peak within the given frequency range"; d.unit = "Hz"; d.sampleType = OutputDescriptor::OneSamplePerStep; d.hasDuration = false; @@ -243,6 +242,38 @@ { FeatureSet fs; + // This could be better. The procedure here is + // + // 1 Produce a harmonic product spectrum within a limited + // frequency range by effectively summing the dB values of the + // bins at each multiple of the bin numbers (up to a given + // number of harmonics) in the range under consideration + // 2 Find the peak bin + // 3 Calculate the peak location by quadratic interpolation + // from the peak bin and its two neighbouring bins + // + // Problems with this: + // + // 1 Harmonics might not be located at integer multiples of the + // original bin frequency + // 2 Quadratic interpolation works "correctly" for dB-valued + // magnitude spectra but might not produce the right results in + // the dB-summed hps, especially in light of the first problem + // 3 Interpolation might not make sense at all if there are + // multiple nearby frequencies interfering across the three + // bins used for interpolation (we may be unable to identify + // the right frequency at all, but it's possible interpolation + // will make our guess worse rather than better) + // + // Possible improvements: + // + // 1 Find the higher harmonics by looking for the peak bin within + // a range around the nominal peak location + // 2 Once a peak has been identified as the peak of the HPS, use + // the original spectrum (not the HPS) to obtain the values for + // interpolation? (would help with problem 2 but might make + // problem 3 worse) + int hs = m_fftSize/2; double *mags = new double[hs+1];