Mercurial > hg > chp
view ConstrainedHarmonicPeak.cpp @ 7:f5b9bae2a8c3
Copyrights etc
author | Chris Cannam |
---|---|
date | Wed, 12 Mar 2014 08:51:11 +0000 |
parents | e9b629578488 |
children | f82a28c2209f |
line wrap: on
line source
/* CHP Copyright (c) 2014 Queen Mary, University of London Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "ConstrainedHarmonicPeak.h" #include <cmath> #include <cstdio> using std::cerr; using std::endl; using std::vector; ConstrainedHarmonicPeak::ConstrainedHarmonicPeak(float inputSampleRate) : Plugin(inputSampleRate), m_fftSize(0), m_minFreq(0), m_maxFreq(22050), m_harmonics(5) { } ConstrainedHarmonicPeak::~ConstrainedHarmonicPeak() { } string ConstrainedHarmonicPeak::getIdentifier() const { return "constrainedharmonicpeak"; } string ConstrainedHarmonicPeak::getName() const { return "Frequency-Constrained Harmonic Peak"; } string ConstrainedHarmonicPeak::getDescription() const { return "Return the interpolated peak frequency of a harmonic product spectrum within a given frequency range"; } string ConstrainedHarmonicPeak::getMaker() const { return "Queen Mary, University of London"; } int ConstrainedHarmonicPeak::getPluginVersion() const { return 1; } string ConstrainedHarmonicPeak::getCopyright() const { return "GPL"; } ConstrainedHarmonicPeak::InputDomain ConstrainedHarmonicPeak::getInputDomain() const { return FrequencyDomain; } size_t ConstrainedHarmonicPeak::getPreferredBlockSize() const { return 2048; } size_t ConstrainedHarmonicPeak::getPreferredStepSize() const { return 512; } size_t ConstrainedHarmonicPeak::getMinChannelCount() const { return 1; } size_t ConstrainedHarmonicPeak::getMaxChannelCount() const { return 1; } ConstrainedHarmonicPeak::ParameterList ConstrainedHarmonicPeak::getParameterDescriptors() const { ParameterList list; ParameterDescriptor d; d.identifier = "minfreq"; d.name = "Minimum frequency"; d.description = "Minimum frequency for peak finding. Will be rounded down to the nearest spectral bin."; d.unit = "Hz"; d.minValue = 0; d.maxValue = m_inputSampleRate/2; d.defaultValue = 0; d.isQuantized = false; list.push_back(d); d.identifier = "maxfreq"; d.name = "Maximum frequency"; d.description = "Maximum frequency for peak finding. Will be rounded up to the nearest spectral bin."; d.unit = "Hz"; d.minValue = 0; d.maxValue = m_inputSampleRate/2; d.defaultValue = 22050; d.isQuantized = false; list.push_back(d); d.identifier = "harmonics"; d.name = "Harmonics"; d.description = "Maximum number of harmonics to consider"; d.unit = ""; d.minValue = 1; d.maxValue = 20; d.defaultValue = 5; d.isQuantized = true; d.quantizeStep = 1; list.push_back(d); return list; } float ConstrainedHarmonicPeak::getParameter(string identifier) const { if (identifier == "minfreq") { return m_minFreq; } else if (identifier == "maxfreq") { return m_maxFreq; } else if (identifier == "harmonics") { return m_harmonics; } return 0; } void ConstrainedHarmonicPeak::setParameter(string identifier, float value) { if (identifier == "minfreq") { m_minFreq = value; } else if (identifier == "maxfreq") { m_maxFreq = value; } else if (identifier == "harmonics") { m_harmonics = int(round(value)); } } ConstrainedHarmonicPeak::ProgramList ConstrainedHarmonicPeak::getPrograms() const { ProgramList list; return list; } string ConstrainedHarmonicPeak::getCurrentProgram() const { return ""; // no programs } void ConstrainedHarmonicPeak::selectProgram(string name) { } ConstrainedHarmonicPeak::OutputList ConstrainedHarmonicPeak::getOutputDescriptors() const { OutputList list; OutputDescriptor d; d.identifier = "peak"; d.name = "Peak frequency"; d.description = "Interpolated frequency of the harmonic spectral peak within the given frequency range"; d.unit = "Hz"; d.sampleType = OutputDescriptor::OneSamplePerStep; d.hasDuration = false; list.push_back(d); return list; } bool ConstrainedHarmonicPeak::initialise(size_t channels, size_t stepSize, size_t blockSize) { if (channels < getMinChannelCount() || channels > getMaxChannelCount()) { cerr << "ConstrainedHarmonicPeak::initialise: ERROR: channels " << channels << " out of acceptable range " << getMinChannelCount() << " -> " << getMaxChannelCount() << endl; return false; } m_fftSize = blockSize; return true; } void ConstrainedHarmonicPeak::reset() { } double ConstrainedHarmonicPeak::findInterpolatedPeak(const double *in, int peakbin, int bins) { // duplicate with SimpleCepstrum plugin // after jos, // https://ccrma.stanford.edu/~jos/sasp/Quadratic_Interpolation_Spectral_Peaks.html if (peakbin < 1 || peakbin > bins - 2) { return peakbin; } double alpha = in[peakbin-1]; double beta = in[peakbin]; double gamma = in[peakbin+1]; double denom = (alpha - 2*beta + gamma); if (denom == 0) { // flat return peakbin; } double p = ((alpha - gamma) / denom) / 2.0; return double(peakbin) + p; } ConstrainedHarmonicPeak::FeatureSet ConstrainedHarmonicPeak::process(const float *const *inputBuffers, Vamp::RealTime timestamp) { FeatureSet fs; // This could be better. The procedure here is // // 1 Produce a harmonic product spectrum within a limited // frequency range by effectively summing the dB values of the // bins at each multiple of the bin numbers (up to a given // number of harmonics) in the range under consideration // 2 Find the peak bin // 3 Calculate the peak location by quadratic interpolation // from the peak bin and its two neighbouring bins // // Problems with this: // // 1 Harmonics might not be located at integer multiples of the // original bin frequency // 2 Quadratic interpolation works "correctly" for dB-valued // magnitude spectra but might not produce the right results in // the dB-summed hps, especially in light of the first problem // 3 Interpolation might not make sense at all if there are // multiple nearby frequencies interfering across the three // bins used for interpolation (we may be unable to identify // the right frequency at all, but it's possible interpolation // will make our guess worse rather than better) // // Possible improvements: // // 1 Find the higher harmonics by looking for the peak bin within // a range around the nominal peak location // 2 Once a peak has been identified as the peak of the HPS, use // the original spectrum (not the HPS) to obtain the values for // interpolation? (would help with problem 2 but might make // problem 3 worse) int hs = m_fftSize/2; double *mags = new double[hs+1]; for (int i = 0; i <= hs; ++i) { mags[i] = sqrt(inputBuffers[0][i*2] * inputBuffers[0][i*2] + inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1]); } // bin freq is bin * samplerate / fftsize int minbin = int(floor((m_minFreq * m_fftSize) / m_inputSampleRate)); int maxbin = int(ceil((m_maxFreq * m_fftSize) / m_inputSampleRate)); if (minbin > hs) minbin = hs; if (maxbin > hs) maxbin = hs; if (maxbin <= minbin) return fs; double *hps = new double[maxbin - minbin + 1]; // HPS in dB after MzHarmonicSpectrum for (int bin = minbin; bin <= maxbin; ++bin) { int i = bin - minbin; hps[i] = 1.0; int contributing = 0; for (int j = 1; j <= m_harmonics; ++j) { if (j * bin > hs) break; hps[i] *= mags[j * bin]; ++contributing; } if (hps[i] <= 0.0) { hps[i] = -120.0; } else { hps[i] = 20.0 / contributing * log10(hps[i]); } } double maxdb = -120.0; int maxidx = 0; for (int i = 0; i <= maxbin - minbin; ++i) { if (hps[i] > maxdb) { maxdb = hps[i]; maxidx = i; } } double interpolated = findInterpolatedPeak(hps, maxidx, maxbin - minbin + 1); interpolated = interpolated + minbin; double freq = interpolated * m_inputSampleRate / m_fftSize; Feature f; f.values.push_back(freq); fs[0].push_back(f); return fs; } ConstrainedHarmonicPeak::FeatureSet ConstrainedHarmonicPeak::getRemainingFeatures() { FeatureSet fs; return fs; }