Chris@7
|
1 /*
|
Chris@7
|
2 CHP
|
Chris@7
|
3 Copyright (c) 2014 Queen Mary, University of London
|
Chris@7
|
4
|
Chris@7
|
5 Permission is hereby granted, free of charge, to any person
|
Chris@7
|
6 obtaining a copy of this software and associated documentation
|
Chris@7
|
7 files (the "Software"), to deal in the Software without
|
Chris@7
|
8 restriction, including without limitation the rights to use, copy,
|
Chris@7
|
9 modify, merge, publish, distribute, sublicense, and/or sell copies
|
Chris@7
|
10 of the Software, and to permit persons to whom the Software is
|
Chris@7
|
11 furnished to do so, subject to the following conditions:
|
Chris@7
|
12
|
Chris@7
|
13 The above copyright notice and this permission notice shall be
|
Chris@7
|
14 included in all copies or substantial portions of the Software.
|
Chris@7
|
15
|
Chris@7
|
16 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
Chris@7
|
17 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
Chris@7
|
18 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
Chris@7
|
19 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
Chris@7
|
20 CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
|
Chris@7
|
21 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
Chris@7
|
22 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
Chris@7
|
23 */
|
Chris@0
|
24
|
Chris@0
|
25 #include "ConstrainedHarmonicPeak.h"
|
Chris@0
|
26
|
Chris@0
|
27 #include <cmath>
|
Chris@0
|
28 #include <cstdio>
|
Chris@0
|
29
|
Chris@0
|
30 using std::cerr;
|
Chris@0
|
31 using std::endl;
|
Chris@0
|
32 using std::vector;
|
Chris@0
|
33
|
Chris@0
|
34 ConstrainedHarmonicPeak::ConstrainedHarmonicPeak(float inputSampleRate) :
|
Chris@0
|
35 Plugin(inputSampleRate),
|
Chris@4
|
36 m_fftSize(0),
|
Chris@0
|
37 m_minFreq(0),
|
Chris@6
|
38 m_maxFreq(22050),
|
Chris@1
|
39 m_harmonics(5)
|
Chris@0
|
40 {
|
Chris@0
|
41 }
|
Chris@0
|
42
|
Chris@0
|
43 ConstrainedHarmonicPeak::~ConstrainedHarmonicPeak()
|
Chris@0
|
44 {
|
Chris@0
|
45 }
|
Chris@0
|
46
|
Chris@0
|
47 string
|
Chris@0
|
48 ConstrainedHarmonicPeak::getIdentifier() const
|
Chris@0
|
49 {
|
Chris@0
|
50 return "constrainedharmonicpeak";
|
Chris@0
|
51 }
|
Chris@0
|
52
|
Chris@0
|
53 string
|
Chris@0
|
54 ConstrainedHarmonicPeak::getName() const
|
Chris@0
|
55 {
|
Chris@0
|
56 return "Frequency-Constrained Harmonic Peak";
|
Chris@0
|
57 }
|
Chris@0
|
58
|
Chris@0
|
59 string
|
Chris@0
|
60 ConstrainedHarmonicPeak::getDescription() const
|
Chris@0
|
61 {
|
Chris@6
|
62 return "Return the interpolated peak frequency of a harmonic product spectrum within a given frequency range";
|
Chris@0
|
63 }
|
Chris@0
|
64
|
Chris@0
|
65 string
|
Chris@0
|
66 ConstrainedHarmonicPeak::getMaker() const
|
Chris@0
|
67 {
|
Chris@0
|
68 return "Queen Mary, University of London";
|
Chris@0
|
69 }
|
Chris@0
|
70
|
Chris@0
|
71 int
|
Chris@0
|
72 ConstrainedHarmonicPeak::getPluginVersion() const
|
Chris@0
|
73 {
|
Chris@0
|
74 return 1;
|
Chris@0
|
75 }
|
Chris@0
|
76
|
Chris@0
|
77 string
|
Chris@0
|
78 ConstrainedHarmonicPeak::getCopyright() const
|
Chris@0
|
79 {
|
Chris@0
|
80 return "GPL";
|
Chris@0
|
81 }
|
Chris@0
|
82
|
Chris@0
|
83 ConstrainedHarmonicPeak::InputDomain
|
Chris@0
|
84 ConstrainedHarmonicPeak::getInputDomain() const
|
Chris@0
|
85 {
|
Chris@0
|
86 return FrequencyDomain;
|
Chris@0
|
87 }
|
Chris@0
|
88
|
Chris@0
|
89 size_t
|
Chris@0
|
90 ConstrainedHarmonicPeak::getPreferredBlockSize() const
|
Chris@0
|
91 {
|
Chris@0
|
92 return 2048;
|
Chris@0
|
93 }
|
Chris@0
|
94
|
Chris@0
|
95 size_t
|
Chris@0
|
96 ConstrainedHarmonicPeak::getPreferredStepSize() const
|
Chris@0
|
97 {
|
Chris@0
|
98 return 512;
|
Chris@0
|
99 }
|
Chris@0
|
100
|
Chris@0
|
101 size_t
|
Chris@0
|
102 ConstrainedHarmonicPeak::getMinChannelCount() const
|
Chris@0
|
103 {
|
Chris@0
|
104 return 1;
|
Chris@0
|
105 }
|
Chris@0
|
106
|
Chris@0
|
107 size_t
|
Chris@0
|
108 ConstrainedHarmonicPeak::getMaxChannelCount() const
|
Chris@0
|
109 {
|
Chris@0
|
110 return 1;
|
Chris@0
|
111 }
|
Chris@0
|
112
|
Chris@0
|
113 ConstrainedHarmonicPeak::ParameterList
|
Chris@0
|
114 ConstrainedHarmonicPeak::getParameterDescriptors() const
|
Chris@0
|
115 {
|
Chris@0
|
116 ParameterList list;
|
Chris@0
|
117
|
Chris@0
|
118 ParameterDescriptor d;
|
Chris@0
|
119 d.identifier = "minfreq";
|
Chris@0
|
120 d.name = "Minimum frequency";
|
Chris@6
|
121 d.description = "Minimum frequency for peak finding. Will be rounded down to the nearest spectral bin.";
|
Chris@0
|
122 d.unit = "Hz";
|
Chris@0
|
123 d.minValue = 0;
|
Chris@0
|
124 d.maxValue = m_inputSampleRate/2;
|
Chris@0
|
125 d.defaultValue = 0;
|
Chris@0
|
126 d.isQuantized = false;
|
Chris@0
|
127 list.push_back(d);
|
Chris@0
|
128
|
Chris@0
|
129 d.identifier = "maxfreq";
|
Chris@0
|
130 d.name = "Maximum frequency";
|
Chris@6
|
131 d.description = "Maximum frequency for peak finding. Will be rounded up to the nearest spectral bin.";
|
Chris@0
|
132 d.unit = "Hz";
|
Chris@0
|
133 d.minValue = 0;
|
Chris@0
|
134 d.maxValue = m_inputSampleRate/2;
|
Chris@6
|
135 d.defaultValue = 22050;
|
Chris@0
|
136 d.isQuantized = false;
|
Chris@0
|
137 list.push_back(d);
|
Chris@0
|
138
|
Chris@1
|
139 d.identifier = "harmonics";
|
Chris@1
|
140 d.name = "Harmonics";
|
Chris@1
|
141 d.description = "Maximum number of harmonics to consider";
|
Chris@1
|
142 d.unit = "";
|
Chris@1
|
143 d.minValue = 1;
|
Chris@1
|
144 d.maxValue = 20;
|
Chris@1
|
145 d.defaultValue = 5;
|
Chris@1
|
146 d.isQuantized = true;
|
Chris@1
|
147 d.quantizeStep = 1;
|
Chris@1
|
148 list.push_back(d);
|
Chris@1
|
149
|
Chris@0
|
150 return list;
|
Chris@0
|
151 }
|
Chris@0
|
152
|
Chris@0
|
153 float
|
Chris@0
|
154 ConstrainedHarmonicPeak::getParameter(string identifier) const
|
Chris@0
|
155 {
|
Chris@0
|
156 if (identifier == "minfreq") {
|
Chris@0
|
157 return m_minFreq;
|
Chris@0
|
158 } else if (identifier == "maxfreq") {
|
Chris@0
|
159 return m_maxFreq;
|
Chris@1
|
160 } else if (identifier == "harmonics") {
|
Chris@1
|
161 return m_harmonics;
|
Chris@0
|
162 }
|
Chris@0
|
163 return 0;
|
Chris@0
|
164 }
|
Chris@0
|
165
|
Chris@0
|
166 void
|
Chris@0
|
167 ConstrainedHarmonicPeak::setParameter(string identifier, float value)
|
Chris@0
|
168 {
|
Chris@0
|
169 if (identifier == "minfreq") {
|
Chris@0
|
170 m_minFreq = value;
|
Chris@0
|
171 } else if (identifier == "maxfreq") {
|
Chris@0
|
172 m_maxFreq = value;
|
Chris@1
|
173 } else if (identifier == "harmonics") {
|
Chris@1
|
174 m_harmonics = int(round(value));
|
Chris@0
|
175 }
|
Chris@0
|
176 }
|
Chris@0
|
177
|
Chris@0
|
178 ConstrainedHarmonicPeak::ProgramList
|
Chris@0
|
179 ConstrainedHarmonicPeak::getPrograms() const
|
Chris@0
|
180 {
|
Chris@0
|
181 ProgramList list;
|
Chris@0
|
182 return list;
|
Chris@0
|
183 }
|
Chris@0
|
184
|
Chris@0
|
185 string
|
Chris@0
|
186 ConstrainedHarmonicPeak::getCurrentProgram() const
|
Chris@0
|
187 {
|
Chris@0
|
188 return ""; // no programs
|
Chris@0
|
189 }
|
Chris@0
|
190
|
Chris@0
|
191 void
|
Chris@0
|
192 ConstrainedHarmonicPeak::selectProgram(string name)
|
Chris@0
|
193 {
|
Chris@0
|
194 }
|
Chris@0
|
195
|
Chris@0
|
196 ConstrainedHarmonicPeak::OutputList
|
Chris@0
|
197 ConstrainedHarmonicPeak::getOutputDescriptors() const
|
Chris@0
|
198 {
|
Chris@0
|
199 OutputList list;
|
Chris@0
|
200
|
Chris@0
|
201 OutputDescriptor d;
|
Chris@0
|
202 d.identifier = "peak";
|
Chris@0
|
203 d.name = "Peak frequency";
|
Chris@6
|
204 d.description = "Interpolated frequency of the harmonic spectral peak within the given frequency range";
|
Chris@0
|
205 d.unit = "Hz";
|
Chris@0
|
206 d.sampleType = OutputDescriptor::OneSamplePerStep;
|
Chris@0
|
207 d.hasDuration = false;
|
Chris@0
|
208 list.push_back(d);
|
Chris@0
|
209
|
Chris@0
|
210 return list;
|
Chris@0
|
211 }
|
Chris@0
|
212
|
Chris@0
|
213 bool
|
Chris@0
|
214 ConstrainedHarmonicPeak::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
Chris@0
|
215 {
|
Chris@0
|
216 if (channels < getMinChannelCount() ||
|
Chris@0
|
217 channels > getMaxChannelCount()) {
|
Chris@0
|
218 cerr << "ConstrainedHarmonicPeak::initialise: ERROR: channels " << channels
|
Chris@0
|
219 << " out of acceptable range " << getMinChannelCount()
|
Chris@0
|
220 << " -> " << getMaxChannelCount() << endl;
|
Chris@0
|
221 return false;
|
Chris@0
|
222 }
|
Chris@0
|
223
|
Chris@4
|
224 m_fftSize = blockSize;
|
Chris@0
|
225
|
Chris@0
|
226 return true;
|
Chris@0
|
227 }
|
Chris@0
|
228
|
Chris@0
|
229 void
|
Chris@0
|
230 ConstrainedHarmonicPeak::reset()
|
Chris@0
|
231 {
|
Chris@0
|
232 }
|
Chris@0
|
233
|
Chris@1
|
234 double
|
Chris@1
|
235 ConstrainedHarmonicPeak::findInterpolatedPeak(const double *in,
|
Chris@1
|
236 int peakbin,
|
Chris@1
|
237 int bins)
|
Chris@1
|
238 {
|
Chris@1
|
239 // duplicate with SimpleCepstrum plugin
|
Chris@1
|
240 // after jos,
|
Chris@1
|
241 // https://ccrma.stanford.edu/~jos/sasp/Quadratic_Interpolation_Spectral_Peaks.html
|
Chris@1
|
242
|
Chris@1
|
243 if (peakbin < 1 || peakbin > bins - 2) {
|
Chris@1
|
244 return peakbin;
|
Chris@1
|
245 }
|
Chris@1
|
246
|
Chris@1
|
247 double alpha = in[peakbin-1];
|
Chris@1
|
248 double beta = in[peakbin];
|
Chris@1
|
249 double gamma = in[peakbin+1];
|
Chris@1
|
250
|
Chris@1
|
251 double denom = (alpha - 2*beta + gamma);
|
Chris@1
|
252
|
Chris@1
|
253 if (denom == 0) {
|
Chris@1
|
254 // flat
|
Chris@1
|
255 return peakbin;
|
Chris@1
|
256 }
|
Chris@1
|
257
|
Chris@1
|
258 double p = ((alpha - gamma) / denom) / 2.0;
|
Chris@1
|
259
|
Chris@1
|
260 return double(peakbin) + p;
|
Chris@1
|
261 }
|
Chris@1
|
262
|
Chris@0
|
263 ConstrainedHarmonicPeak::FeatureSet
|
Chris@0
|
264 ConstrainedHarmonicPeak::process(const float *const *inputBuffers, Vamp::RealTime timestamp)
|
Chris@0
|
265 {
|
Chris@0
|
266 FeatureSet fs;
|
Chris@0
|
267
|
Chris@6
|
268 // This could be better. The procedure here is
|
Chris@6
|
269 //
|
Chris@6
|
270 // 1 Produce a harmonic product spectrum within a limited
|
Chris@6
|
271 // frequency range by effectively summing the dB values of the
|
Chris@6
|
272 // bins at each multiple of the bin numbers (up to a given
|
Chris@6
|
273 // number of harmonics) in the range under consideration
|
Chris@6
|
274 // 2 Find the peak bin
|
Chris@6
|
275 // 3 Calculate the peak location by quadratic interpolation
|
Chris@6
|
276 // from the peak bin and its two neighbouring bins
|
Chris@6
|
277 //
|
Chris@6
|
278 // Problems with this:
|
Chris@6
|
279 //
|
Chris@6
|
280 // 1 Harmonics might not be located at integer multiples of the
|
Chris@6
|
281 // original bin frequency
|
Chris@6
|
282 // 2 Quadratic interpolation works "correctly" for dB-valued
|
Chris@6
|
283 // magnitude spectra but might not produce the right results in
|
Chris@6
|
284 // the dB-summed hps, especially in light of the first problem
|
Chris@6
|
285 // 3 Interpolation might not make sense at all if there are
|
Chris@6
|
286 // multiple nearby frequencies interfering across the three
|
Chris@6
|
287 // bins used for interpolation (we may be unable to identify
|
Chris@6
|
288 // the right frequency at all, but it's possible interpolation
|
Chris@6
|
289 // will make our guess worse rather than better)
|
Chris@6
|
290 //
|
Chris@6
|
291 // Possible improvements:
|
Chris@6
|
292 //
|
Chris@6
|
293 // 1 Find the higher harmonics by looking for the peak bin within
|
Chris@6
|
294 // a range around the nominal peak location
|
Chris@6
|
295 // 2 Once a peak has been identified as the peak of the HPS, use
|
Chris@6
|
296 // the original spectrum (not the HPS) to obtain the values for
|
Chris@6
|
297 // interpolation? (would help with problem 2 but might make
|
Chris@6
|
298 // problem 3 worse)
|
Chris@6
|
299
|
Chris@4
|
300 int hs = m_fftSize/2;
|
Chris@1
|
301
|
Chris@1
|
302 double *mags = new double[hs+1];
|
Chris@1
|
303 for (int i = 0; i <= hs; ++i) {
|
Chris@4
|
304 mags[i] = sqrt(inputBuffers[0][i*2] * inputBuffers[0][i*2] +
|
Chris@4
|
305 inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1]);
|
Chris@1
|
306 }
|
Chris@1
|
307
|
Chris@1
|
308 // bin freq is bin * samplerate / fftsize
|
Chris@1
|
309
|
Chris@4
|
310 int minbin = int(floor((m_minFreq * m_fftSize) / m_inputSampleRate));
|
Chris@4
|
311 int maxbin = int(ceil((m_maxFreq * m_fftSize) / m_inputSampleRate));
|
Chris@1
|
312 if (minbin > hs) minbin = hs;
|
Chris@1
|
313 if (maxbin > hs) maxbin = hs;
|
Chris@1
|
314 if (maxbin <= minbin) return fs;
|
Chris@1
|
315
|
Chris@1
|
316 double *hps = new double[maxbin - minbin + 1];
|
Chris@1
|
317
|
Chris@1
|
318 // HPS in dB after MzHarmonicSpectrum
|
Chris@1
|
319
|
Chris@1
|
320 for (int bin = minbin; bin <= maxbin; ++bin) {
|
Chris@1
|
321
|
Chris@1
|
322 int i = bin - minbin;
|
Chris@1
|
323 hps[i] = 1.0;
|
Chris@1
|
324
|
Chris@1
|
325 int contributing = 0;
|
Chris@1
|
326
|
Chris@1
|
327 for (int j = 1; j <= m_harmonics; ++j) {
|
Chris@1
|
328 if (j * bin > hs) break;
|
Chris@1
|
329 hps[i] *= mags[j * bin];
|
Chris@1
|
330 ++contributing;
|
Chris@1
|
331 }
|
Chris@1
|
332
|
Chris@1
|
333 if (hps[i] <= 0.0) {
|
Chris@1
|
334 hps[i] = -120.0;
|
Chris@1
|
335 } else {
|
Chris@1
|
336 hps[i] = 20.0 / contributing * log10(hps[i]);
|
Chris@1
|
337 }
|
Chris@1
|
338 }
|
Chris@1
|
339
|
Chris@1
|
340 double maxdb = -120.0;
|
Chris@1
|
341 int maxidx = 0;
|
Chris@1
|
342 for (int i = 0; i <= maxbin - minbin; ++i) {
|
Chris@1
|
343 if (hps[i] > maxdb) {
|
Chris@1
|
344 maxdb = hps[i];
|
Chris@1
|
345 maxidx = i;
|
Chris@1
|
346 }
|
Chris@1
|
347 }
|
Chris@1
|
348
|
Chris@1
|
349 double interpolated = findInterpolatedPeak(hps, maxidx, maxbin - minbin + 1);
|
Chris@1
|
350 interpolated = interpolated + minbin;
|
Chris@1
|
351
|
Chris@4
|
352 double freq = interpolated * m_inputSampleRate / m_fftSize;
|
Chris@1
|
353
|
Chris@1
|
354 Feature f;
|
Chris@1
|
355 f.values.push_back(freq);
|
Chris@1
|
356 fs[0].push_back(f);
|
Chris@1
|
357
|
Chris@0
|
358 return fs;
|
Chris@0
|
359 }
|
Chris@0
|
360
|
Chris@0
|
361 ConstrainedHarmonicPeak::FeatureSet
|
Chris@0
|
362 ConstrainedHarmonicPeak::getRemainingFeatures()
|
Chris@0
|
363 {
|
Chris@0
|
364 FeatureSet fs;
|
Chris@0
|
365 return fs;
|
Chris@0
|
366 }
|
Chris@0
|
367
|