comparison demo/annotation2script.py @ 0:90155bdd5dd6

first commit
author Emmanouil Theofanis Chourdakis <e.t.chourdakis@qmul.ac.uk>
date Wed, 16 May 2018 18:27:05 +0100
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:90155bdd5dd6
1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 """
4 Created on Tue May 1 17:00:26 2018
5
6 @author: Emmanouil Theofanis Chourdakis
7
8 Takes an .ann annotation and a .json character line
9 file and creates a _script.txt script file.
10
11 """
12
13 import argparse
14 import logging
15 import ner
16 from rel import *
17 import pypeg2 as pg
18 import pandas as pd
19 import json
20 import os
21
22 logging.basicConfig(level=logging.INFO)
23
24
25 def annotation2script(annot, quotesdict):
26 logging.info('Parsing annotation')
27 parsed = pg.parse(annot, ner.AnnotationFile)
28
29 characters = {}
30 places = {}
31 character_lines = {}
32 scenes = []
33
34 # Store an entity and relations dictionary since relations
35 # point to such entities
36
37 dictionary = {}
38
39 # Visit all the parsed lines. Do it in two passes, first parse
40 # entities and then relations. The reason for that is that some times
41 # a relation refers to an entity that has not been defined.
42
43 for line in parsed:
44 # Every annotation line has a single object
45 obj = line[0]
46
47 if isinstance(obj, ner.AnnotationTuple):
48
49 annotation = obj.annotation.lower()
50
51 # Store to dictionary the string relating
52 # to the annotation
53
54
55 if annotation.split()[0].lower() in ['a', 'the']:
56 annotation = annotation.split()[1]
57
58 dictionary[obj.variable] = annotation
59
60 if obj.type == 'Character':
61 characters[annotation] = {}
62 elif obj.type == 'Character_Line':
63 character_lines[annotation] = {}
64 elif obj.type == 'Place':
65 places[annotation] = {}
66
67 for line in parsed:
68 obj = line[0]
69 if isinstance(obj, ner.AttributeTuple):
70 # If it is an instance of an attribute tuple,
71 # find out whether it is a gender assignment, then find
72 # the character it refers to and add the gender as attribute
73
74 target = dictionary[obj.target]
75 value = obj.annotation
76
77 if obj.type == 'Gender':
78 characters[target]['gender'] = value
79 elif obj.type == 'Age':
80 characters[target]['age'] = value
81
82
83 for line in parsed:
84 # Every annotation line has a single object
85 obj = line[0]
86
87 if isinstance(obj, ner.RelationTuple):
88
89 # Relations have a trigger, a first argument `arg1' and a
90 # second argument `arg2'. There are going to be
91 # |arg1| * |arg2| relations constructed for each trigger
92 # where |arg1| is the number of candidates for argument 1
93 # and |arg2| the number of candidates for argument 2
94
95 arg1_candidates = []
96 arg2_candidates = []
97
98 # Check relation's arguments:
99 for arg in obj.args:
100 if arg.label == 'Says':
101 trigger = dictionary[arg.target]
102 label = 'Quote'
103 elif arg.label == 'Spatial_Signal':
104 trigger = dictionary[arg.target]
105 label = 'Spatial_Relation'
106 if arg.label in ['Trajector', 'WHO']:
107 arg1_candidates.append(dictionary[arg.target])
108 if arg.label in ['Landmark', 'WHAT']:
109 arg2_candidates.append(dictionary[arg.target])
110
111 for arg1 in arg1_candidates:
112 for arg2 in arg2_candidates:
113 relation = (trigger, arg1, arg2, label)
114 if label == 'Quote':
115 character_lines[arg2]['who'] = arg1
116 if label == 'Spatial_Relation':
117 scenes.append(arg2)
118
119 # Generate cast list
120 cast_list_section = r"""Cast List:
121 Narrator - male or female - panned center
122 """
123
124 # Ping - pong the characters
125 panned = 'right'
126 for c in characters:
127 if 'gender' not in characters[c]:
128 gender = 'male or female'
129 else:
130 gender = characters[c]['gender'].lower()
131
132 cast_list_section += '{} - {} - panned {}\n'.format(c.capitalize(), gender, panned)
133 if panned == 'right':
134 panned = 'left'
135 else:
136 panned = 'right'
137
138
139 scenes_definition = r"""Scenes:
140 """
141
142 for n, scene in enumerate(scenes):
143 scenes_definition += "{} - {} - fxive:{} - none".format(n+1, scene, scene)
144
145 # Scene introduction
146 ## TODO: Do it so that scenes follow the text
147
148 # Keep the correct order in lines
149 lines_order = [qq for qq in quotesdict]
150
151 # The lines are of the format <*line0> <*line1> etc,
152 # sort them based on the number just before the closing >
153 lines_order = sorted(lines_order, key=lambda x: int(x[-3]))
154 lines_section = r"""Script:
155 --- Scene 1 ---
156 """
157
158 for l in lines_order:
159 if l[1] == 'n':
160 lines_section += "[Narrator] {}\n".format(quotesdict[l])
161 elif l[1] == 'c':
162 lines_section += "[{}] {}\n".format(character_lines[l[:-1]]['who'].capitalize(), quotesdict[l])
163
164 script = cast_list_section + '\n' + scenes_definition + '\n' + lines_section
165
166
167
168 # Create transcript
169
170 lines = []
171
172 for cline in quotesdict:
173 ldict = {}
174
175 cline = cline[:-1] # Remove the trailing dot
176
177 if cline[1] == 'c':
178 ldict['cast'] = character_lines[cline]['who'].capitalize()
179 else:
180 ldict['cast'] = 'Narrator'
181
182 lineno = cline.replace('<', '').replace('>', '')
183 ldict['filename'] = '{}.wav'.format(lineno)
184 ldict['line'] = quotesdict['{}.'.format(cline)]
185 lines.append(ldict)
186
187 # Create sfx dataframe
188
189 sfx = []
190 for scene in scenes:
191 sfx_dict = {'sfx': scene, 'url':'http://edit_me'}
192 sfx.append(sfx_dict)
193
194 sfx_df = pd.DataFrame.from_records(sfx)
195
196 transcript_df = pd.DataFrame.from_records(lines)
197 return script, transcript_df, sfx_df
198
199
200 if __name__ == "__main__":
201 argparser = argparse.ArgumentParser()
202 argparser.add_argument('input_annotation_path',
203 help='.ann file with annotation')
204
205 argparser.add_argument('input_json_path',
206 help='.json file containing the character quotes')
207
208 args = argparser.parse_args()
209
210 # Load annotation and quotes dictionary
211 with open(args.input_annotation_path) as f:
212 annot = f.read()
213
214 with open(args.input_json_path) as f:
215 quotesdict = json.load(f)
216
217 script, transcript_df, sfx_df = annotation2script(annot, quotesdict)
218
219 output_path = args.input_annotation_path[:-4] + '_script.txt'
220
221 with open(output_path, 'w') as f:
222 f.write(script)
223
224 transcript_df.to_excel(os.path.join(os.path.dirname(args.input_annotation_path),'transcript.xls'))
225 sfx_df.to_excel(os.path.join(os.path.dirname(args.input_annotation_path), 'sfx.xls'))
226