Mercurial > hg > chourdakisreiss2016
diff experiment-reverb/code/supervised_training_pca.py @ 0:246d5546657c
initial commit, needs cleanup
author | Emmanouil Theofanis Chourdakis <e.t.chourdakis@qmul.ac.uk> |
---|---|
date | Wed, 14 Dec 2016 13:15:48 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/experiment-reverb/code/supervised_training_pca.py Wed Dec 14 13:15:48 2016 +0000 @@ -0,0 +1,737 @@ +#!/usr/bin/python2 +# -*- coding: utf-8 -*- +""" +Created on Thu Apr 23 11:53:17 2015 + +@author: mmxgn +""" + +# This file does the cluster estimation and the removal of outliers + +from sys import argv, exit +from essentia.standard import YamlInput, YamlOutput +from essentia import Pool +from pca import * + +from numpy import * +from sklearn import cluster +from sklearn.metrics import pairwise_distances +from sklearn.cluster import KMeans, MiniBatchKMeans +import matplotlib.pyplot as plt +#from sklearn.mixture import GMM +from sklearn.naive_bayes import GaussianNB, MultinomialNB +from scipy.signal import decimate +from sklearn import cross_validation + +#from hmmlearn import hmm +from hmmlearn.hmm import GMM +from hmmlearn import hmm +#from adpcm import adm, adm_reconstruct + + +mse = lambda A,B: ((array(A)-array(B)) ** 2).mean() + + +def smooth_matrix_1D(X): + window = scipy.signal.gaussian(51,4) + window = window/sum(window) + intermx = zeros((X.shape[0],X.shape[1]+100)) + intermx[:, 50:-50] = X + + for m in range(0, X.shape[0]): + # print intermx.shape + intermx[m,:] = convolve(ravel(intermx[m,:]), window,'same') + + return intermx[:,50:-50] + +def adm_reconstruct(codeword, h, dmin=.01, dmax=.28): + x = zeros((1, codeword.shape[1])) + + delta1 = dmin + delta2 = dmin + Sum = h + + x[0] = h + for i in range(0, codeword.shape[1]): + if codeword[0,i] == 0: + delta1 = dmin + delta2 = dmin + + elif codeword[0,i] == 1: + delta2 = dmin + Sum += delta1 + delta1 *= 2 + if delta1 > dmax: + delta1 = dmax + + elif codeword[0,i] == -1: + delta1 = dmin + Sum -= delta2 + delta2 *= 2 + if delta2 > dmax: + delta2 = dmax + x[0,i] = Sum + return x + +def adm(x, dmin=.01, dmax=.28, tol=0.0001): + + # Adaptive delta modulation adapted by code: + # (adeltamod.m) + # + # Adaptive Delta Modulator + # by Gandhar Desai (gdesai) + # BITS Pilani Goa Campus + # Date: 28 Sept, 2013 + + xsig = x + + Lx = len(x) + + ADMout = zeros((1, Lx)) + codevec = zeros((1, Lx)) + + + Sum = x[0] + delta1 = dmin + delta2 = dmin + mult1 = 2 + mult2 = 2 + for i in range(0, Lx): + #print abs(xsig[i] - Sum) + if (abs(xsig[i] - Sum) < tol): + bit = 0 + delta2 = dmin + delta1 = dmin + + + elif (xsig[i] >= Sum): + bit = 1 + delta2 = dmin + Sum += delta1 + delta1 *= mult1 + if delta1 > dmax: + delta1 = dmax + + + else: + bit = -1 + delta1 = dmin + Sum -= delta2 + delta2 *= mult2 + if delta2 > dmax: + delta2 = dmax + + + + ADMout[0, i] = Sum + codevec[0, i]= bit + + return ADMout,codevec, x[0] + +if __name__=="__main__": + if len(argv) != 2: + print "[EE] Wrong number of arguments" + print "[II] Correct syntax is:" + print "[II] \t%s <training_file>" + print "[II] where <training_file> is a .yaml file containing the" + print "[II] features of the dataset (try output2_stage/fulltraining-last.yaml)" + exit(-1) + + + n_clusters = 2 + UpsamplingFactor = 1 + dmin = 0.001 + dmax = 0.28 + tol = 0.001 + + infile = argv[1] + + features_pool = YamlInput(filename = infile)() + + + + feature_captions = features_pool.descriptorNames() + parameter_captions = [] + + + for c in features_pool.descriptorNames(): + if c.split('.')[0] == 'parameter': + parameter_captions.append(c) + if c.split('.')[0] == 'metadata' or c.split('.')[0] == 'parameter': + feature_captions.remove(c) + + + + close('all') + + print "[II] Loaded training data from %s (%s) " % (infile, features_pool['metadata.date'][0]) + print "[II] %d Features Available: " % len(feature_captions) + + + + print str(feature_captions).replace("', ","\n").replace('[','').replace("'","[II]\t ")[:-7] + + nfeatures_in = len(feature_captions) + nparameters_in = len(parameter_captions) +1 features_vector = zeros((nfeatures_in, len(features_pool[feature_captions[0]]))) + + parameters_vector = zeros((nparameters_in, len(features_pool[parameter_captions[0]]))) + + + for i in range(0, nfeatures_in): + features_vector[i, :] = features_pool[feature_captions[i]].T + for i in range(0, nparameters_in): + parameters_vector[i, :] = features_pool[parameter_captions[0]].T + + print "[II] %d parameters used:" % len(parameter_captions) + print str(parameter_captions).replace("', ","\n").replace('[','').replace("'","[II]\t ")[:-7].replace('parameter.','') + + print "[II] Marking silent parts" + + silent_parts = zeros((1, len(features_pool[feature_captions[i]].T))) + + rms = features_vector[feature_captions.index('rms'), :] + + # Implementing Hysteresis Gate -- High threshold is halfway between + # the mean and the max and Low is halfway between the mean dn the min + + rms_threshold_mean = mean(rms) + + rms_threshold_max = max(rms) + rms_threshold_min = min(rms) + + rms_threshold_high = 0.1 * rms_threshold_mean + rms_threshold_low = 0.01 * rms_threshold_mean + + for n in range(1, len(rms)): + prev = rms[n-1] + curr = rms[n] + + if prev >= rms_threshold_high: + if curr < rms_threshold_low: + silent_parts[0,n] = 1 + else: + silent_parts[0,n] = 0 + elif prev <= rms_threshold_low: + if curr > rms_threshold_high: + silent_parts[0,n] = 0 + else: + silent_parts[0,n] = 1 + else: + silent_parts[0,n] = silent_parts[0,n-1] + + + if silent_parts[0,1] == 1: + silent_parts[0, 0] = 1 + + + # plot(rms) + # plot(silent_parts.T) + # plot(ones((len(rms), 1))*rms_threshold_high) + # plot(ones((len(rms), 1))*rms_threshold_low) + + active_index = invert(silent_parts.flatten().astype(bool)) + + # Keep only active parts + + # Uncomment this + features_vector = features_vector[:, active_index] + # parameters_vector = parameters_vector[:, active_index] + + moments_vector = zeros((features_vector.shape[0], 2)) + + print "[II] Storing moments vector" + for i in range(0, features_vector.shape[0]): + mean_ = mean(features_vector[i,:]) + std_ = std(features_vector[i,:], ddof=1) + moments_vector[i,0] = mean_ + moments_vector[i,1] = std_ + + features_vector[i,:] = (features_vector[i,:] - mean_)/std_ + + features_vector_original = features_vector + + + print "[II] Extracting PCA configuration " + + kernel, q, featurelist = extract_pca_configuration_from_data(features_vector) + + print "[II] Optimal number of PCs to keep: %d" % q + + feature_captions_array = array(feature_captions) + + # features_to_keep = features_vector + + features_to_keep = list(feature_captions_array[featurelist]) + print "[II] Decided to keep %d features:" % len(features_to_keep) + print str(features_to_keep).replace("', ","\n").replace('[','').replace("'","[II]\t ")[:-7] + + + + # Keep the desired features + #Uncomment this + features_kept_data = features_vector[featurelist,:] + # features_kept_data = features_vector + # features_kept_data = features_vector + + # Generate the parameter clusters using k-means + + # Uncomment this + features_vector = (kernel.T*features_kept_data)[0:q,:] + #features_vector = log(features_vector+0.001) + # features_vector = features_vector_original + + + # parameters_k_means = KMeans(n_clusters = parameters_k, init='k-means++', max_iter=300, tol=0.0000001, verbose = 1) + parameters_k_means = KMeans(init='k-means++', n_init=10, max_iter=300, tol=0.0000001, verbose = 0) +# # parameters_k_means = MiniBatchKMeans(init='k-means++', max_iter=300, tol=0.00001, verbose = 1) +# +# # Quantize the differences of the parameters instead of the parameters themselves +# parameters_vector_diff = concatenate((zeros((shape(parameters_vector)[0],1)),diff(parameters_vector, axis=1)),axis=1) +# features_vector_diff = concatenate((zeros((shape(features_vector)[0],1)),diff(features_vector,axis=1)),axis=1) +# +# # Delete this afterwards +# # features_vector = features_vector_diff +# parameters_k_means.fit(parameters_vector_diff.T) + + print "[II] Trying ADM-coded parameters" + print "[II] Upsampling features and parameters by a factor of %d" % UpsamplingFactor + + + # Upsampled features and parameters + features_vector_upsampled = smooth_matrix_1D(repeat(features_vector,UpsamplingFactor, axis=1)) + + # feature_labels_upsampled = repeat(features_clustering_labels,UpsamplingFactor, axis=0) + parameters_vector_upsampled = repeat(parameters_vector,UpsamplingFactor, axis=1) + + # parameters_vector_upsampled = smooth_matrix_1D(parameters_vector_upsampled) + + parameters_vector_upsampled_adm = matrix(zeros(shape(parameters_vector_upsampled))) + parameters_vector_upsampled_code = matrix(zeros(shape(parameters_vector_upsampled))) + parameters_vector_upsampled_firstval = matrix(zeros((parameters_vector_upsampled.shape[0],1))) + + # Reconstructed parameters + + parameters_vector_upsampled_reconstructed = matrix(zeros(shape(parameters_vector_upsampled))) + + + + + def adm_matrix(X, dmin=0.001,dmax=0.28,tol=0.001): + + out = matrix(zeros(shape(X))) + code = matrix(zeros(shape(X))) + firstval = matrix(zeros((X.shape[0], 1))) + + for i in range(0, X.shape[0]): + out[i,:], code[i,:], firstval[i,0] = adm(X[i,:],dmin=dmin,dmax=dmax,tol=tol) + + return out,code,firstval + +# parameters_vector_upsampled_reconstructed[i,:] = adm_reconstruct(parameters_vector_upsampled_code[i,:],parameters_vector_upsampled_firstval[i,0], dmin=dmin,dmax=dmax) + + def adm_matrix_reconstruct(code, firstval, dmin=0.001, dmax=0.28): + X = matrix(zeros(shape(code))) + for i in range(0, code.shape[0]): + X[i,:] = adm_reconstruct(code[i,:], firstval[i,0], dmin=dmin, dmax=dmax) + + return X + + + parameters_vector_upsampled_adm, parameters_vector_upsampled_code, parameters_vector_upsampled_firstval = adm_matrix(parameters_vector_upsampled, dmin, dmax, tol) + + + def diff_and_pad(X): + return concatenate(( + zeros(( + shape(X)[0], + 1 + )), + diff(X, axis=1)), + axis=1) + + + # features_vector_upsampled = features_vector_upsampled + + + # features_vector_upsampled = diff_and_pad(features_vector_upsampled) + + +# features_vector_diff = concatenate((zeros((shape(features_vector)[0],1)),diff(features_vector,axis=1)),axis=1) + + + + # Segmentation stuff + + + +# for i in range(0, parameters_vector_upsampled.shape[0]): +# out, code, h = adm(parameters_vector_upsampled[i,:],dmin=dmin,dmax=dmax,tol=tol) +# parameters_vector_upsampled_adm[i,:] = out +# parameters_vector_upsampled_code[i,:] = code +# parameters_vector_upsampled_firstval[i, 0] = h + +# parameters_k_means.fit(parameters_vector.T) +## +# parameters_k_means_centers = parameters_k_means.cluster_centers_ +# parameters_k_means_labels = parameters_k_means.labels_ +## +# parameters_vector_estimated = zeros(shape(parameters_vector)) +## +# for n in range(0, len(parameters_vector_estimated[0])): +# parameters_vector_estimated[:,n] = parameters_k_means_centers[parameters_k_means_labels[n]] +## +### plot(parameters_vector[0]) +## # plot(parameters_vector_estimated[0]) +## +## # PROvLIMA EDW +# print "[II] Parameters MSE for %d clusters: %.3f" % (len(parameters_k_means.cluster_centers_), mse(parameters_vector, parameters_vector_estimated)) +# +## + print "[II] Clustering features." +# + features_clustering = GMM(n_components = n_clusters, covariance_type='full') +# + features_clustering.fit( features_vector_upsampled.T, y=parameters_vector_upsampled_code) +# + features_clustering_means = features_clustering.means_ + features_clustering_labels = features_clustering.predict(features_vector_upsampled.T) + features_clustering_sigmas = features_clustering.covars_ +# + features_vector_upsampled_estimated = zeros(shape(features_vector_upsampled)) +# +# + for n in range(0, len(features_vector_upsampled_estimated[0])): + features_vector_upsampled_estimated[:,n] = features_clustering_means[features_clustering_labels[n]] +# +# # for n in range(0,features_vector.shape[0]): +# # hist(features_vector[1]-features_vector_estimated[1], 256) +# std(features_vector[1]-features_vector_estimated[1], ddof=1) +# mean(features_vector[1]-features_vector_estimated[1]) +# + print "[II] Features MSE for %d clusters: %.3f" % (n_clusters, mse(features_vector_upsampled, features_vector_upsampled_estimated)) + + + + def cross_validate_clustering(data, estimator): + print "[II] Crossvalidating... " + estimator_fulldata = estimator + estimator_fulldata.fit(data) + + # labels = estimator_fulldata.predict(data) + means = estimator_fulldata.means_ + # print means + + percents = arange(0.1,0.6,0.1) + MSEs = [] + reconstructed = zeros(shape(data)) + labels = estimator.predict(data) + for n in range(0, len(reconstructed)): + reconstructed[n,:] = means[labels[n]] + + MSEs.append(mse(data,reconstructed)) + for p in percents: + train,test = cross_validation.train_test_split(data,test_size=p,random_state=0) + train = matrix(train) + test = matrix(test) + # print shape(train) + # print shape(test) + estimator.fit(train) + means = estimator.means_ + labels = estimator.predict(test) + reconstructed = zeros(shape(test)) + for n in range(0, len(reconstructed)): + reconstructed[n,:] = means[labels[n]] + + m = mse(test,reconstructed) + + print "[II] MSE for clustering crossvalidated data %.2f-%.2f: %.5f" % ((1-p), p, m) + MSEs.append(m) + + print "[II] Crossvalidation complete" + + return MSEs + + # print "[II] Trying Cross Validation" + + # cross_validate_clustering(features_vector_upsampled.T, features_clustering) + + + # Construct parameters alphabet, each symbol is going to be a different column vector + # in parameter code matrix + + + def vector_to_states(X): + """ + Input: a vector MxN with N samples and M variables + Output: a codeword dictionary `parameters_alphabet', + state_seq, inverse `parameters_alphabet_inv' """ + + + parameters_alphabet = {} + n = 0 + + for i in range(0, X.shape[1]): + vec = tuple(ravel(X[:,i])) + if vec not in parameters_alphabet: + parameters_alphabet[vec] = n + n += 1 + + parameters_alphabet_inv = dict([(parameters_alphabet[m],m) for m in parameters_alphabet]) + + state_seq = array([parameters_alphabet[tuple(ravel(X[:,m]))] for m in range(0, parameters_vector_upsampled_code.shape[1])] ) + + return state_seq, parameters_alphabet, parameters_alphabet_inv + + + def states_to_vector(predicted, parameters_alphabet_inv): + estimated = matrix(zeros((len(parameters_alphabet_inv[0]), len(predicted)))) + for i in range(0, len(state_seq)): + estimated[:, i] = matrix(parameters_alphabet_inv[predicted[i]]).T + + return estimated + + state_seq, parameters_alphabet, parameters_alphabet_inv = vector_to_states(parameters_vector_upsampled_code) + + + parameters_change_variable = matrix(diff_and_pad(parameters_vector_upsampled)!=0).astype(int) + + changes_state_seq, changes_parameters_alphabet, changes_parameters_alphabet_inv = vector_to_states(parameters_change_variable) + + + # This is an hmm that just codes the changes" + # We have only two states, change and stay the same. + + + print "[II] Creating emission probability mixtures for every state " + parameters_state, parameter_state_alphabet, parameter_state_alphabet_inv = vector_to_states(parameters_vector_upsampled) + + gmm_list_changes = [] + for n in range(0, len(parameter_state_alphabet)): + vectors = features_vector_upsampled[:,parameters_state == n] + gmm = GMM(n_components=n_clusters, covariance_type = 'diag') + gmm.fit(vectors.T) + gmm_list_changes.append(gmm) + + + hmm_changes = hmm.GMMHMM(n_components=len(parameter_state_alphabet), gmms=array(gmm_list_changes),n_mix=n_clusters) + hmm_changes.fit([array(features_vector_upsampled).T]) + + # subplot(211) + # plot(parameters_change_variable.T) + + subplot(211), plot(parameters_vector_upsampled.T) + subplot(212) + + predicted_states = hmm_changes.predict(array(features_vector_upsampled.T)) + predicted_states_estimated = states_to_vector(predicted_states, parameter_state_alphabet_inv) + + plot(predicted_states_estimated.T) + + +# print "[II] (changes hmm-chain) Creating emission probability mixtures for every state " +# +# gmm_list_changes = [] +# for n in range(0, 2): +# vectors = features_vector_upsampled[:,changes_state_seq == n] +# gmm = GMM(n_components=n_clusters, covariance_type = 'diag') +# gmm.fit(vectors.T) +# gmm_list_changes.append(gmm) +# +# +# hmm_changes = hmm.GMMHMM(n_components=2, gmms=array(gmm_list_changes),n_mix=n_clusters) +# hmm_changes.fit([array(features_vector_upsampled).T]) +# +# subplot(211) +# plot(parameters_change_variable.T) +# subplot(212) +# +# changes_predicted_states = hmm_changes.predict(array(features_vector_upsampled.T)) +# predicted_changes_estimated = states_to_vector(changes_predicted_states, changes_parameters_alphabet_inv) +# +# plot(predicted_changes_estimated.T) + + + + + # End of changes HMM here + + + print "[II] Creating emission probability mixtures for every state" + gmm_list = [] + for n in range(0, 3): + vectors = features_vector_upsampled[:,state_seq == n] + gmm = GMM(n_components=n_clusters,covariance_type = 'diag') + gmm.fit(vectors.T) + gmm_list.append(gmm) + + hmm1 = hmm.GMMHMM(n_components=3, gmms=array(gmm_list),n_mix=n_clusters) + hmm1.fit([array(features_vector_upsampled).T]) + + figure() + subplot(221) + plot(parameters_vector_upsampled_code.T) + + predicted = hmm1.predict(array(features_vector_upsampled.T)) + + code_estimated = matrix(zeros((len(parameters_vector_upsampled), len(state_seq)))) + + # for i in range(0, len(state_seq)): + # code_estimated[:, i] = matrix(parameters_alphabet_inv[predicted[i]]).T + + code_estimated = states_to_vector(predicted,parameters_alphabet_inv) + subplot(222) + plot(code_estimated.T) + + reconstructed_original = adm_matrix_reconstruct(parameters_vector_upsampled_code, parameters_vector_upsampled_firstval) + subplot(223) + plot(reconstructed_original.T) + subplot(224) + reconstructed_estimated = adm_matrix_reconstruct(code_estimated, parameters_vector_upsampled_firstval) + plot(reconstructed_estimated.T) + +# scatter(features_vector_upsampled[0,:],features_vector_upsampled_estimated[0,:]) +# scatter(features_vector_upsampled[1,:],features_vector_upsampled_estimated[1,:]) +# +# xlabel('Original Features on Principal Components') +# ylabel('Estimated Features on Principal Components') +# title('Original vs Estimated Features') +# savefig('original_vs_estimated.png') + + + +# +# + print "[II] Testing Gaussian Naive Bayes Classifier" +## + gnb = GaussianNB() + gnb.fit(features_vector_upsampled.T, parameters_state) + + parameters_state_estimated = gnb.predict(features_vector_upsampled.T) + + output = states_to_vector(parameters_state_estimated, parameter_state_alphabet_inv) + + figure() + subplot(211) + plot(parameters_vector_upsampled.T) + subplot(212) + plot(smooth_matrix_1D(output.T)) +# parameters_vector_upsampled_code_estimated = gnb.predict(features_vector_upsampled.T) +# +# +## +# print "[II] Raw Parameters - Gaussian Naive Bayes classifier testing ratio: %.4f" % (float(sum((parameters_vector_upsampled_code_estimated == parameters_vector_upsampled_code).astype(float)))/float(len(parameters_k_means_labels))) +## +# plot(adm_matrix_reconstruct(parameters_vector_upsampled_code_estimated,parameters_vector_upsampled_firstval,dmin,dmax).T) +# +# print "[II] Trying ADM-coded parameters" +# UpsamplingFactor = 100 +# print "[II] Upsampling features and parameters by a factor of %d" % UpsamplingFactor +# +# +# # Upsampled features and parameters +# features_vector_upsampled = repeat(features_vector,UpsamplingFactor, axis=1) +# feature_labels_upsampled = repeat(features_clustering_labels,UpsamplingFactor, axis=0) +# parameters_vector_upsampled = repeat(parameters_vector,UpsamplingFactor, axis=1) +# +# parameters_vector_upsampled_adm = matrix(zeros(shape(parameters_vector_upsampled))) +# parameters_vector_upsampled_code = matrix(zeros(shape(parameters_vector_upsampled))) +# parameters_vector_upsampled_firstval = matrix(zeros((parameters_vector_upsampled.shape[0],1))) +# +# # Reconstructed parameters +# +# parameters_vector_upsampled_reconstructed = matrix(zeros(shape(parameters_vector_upsampled))) +# +# dmin = 0.001 +# dmax = 0.28 +# tol = 0.001 +# for i in range(0, parameters_vector_upsampled.shape[0]): +# out, code, h = adm(parameters_vector_upsampled[i,:],dmin=dmin,dmax=dmax,tol=tol) +# parameters_vector_upsampled_adm[i,:] = out +# parameters_vector_upsampled_code[i,:] = code +# parameters_vector_upsampled_firstval[i, 0] = h +# +# +# # Reconstruct-ADM +# parameters_vector_upsampled_reconstructed[i,:] = adm_reconstruct(parameters_vector_upsampled_code[i,:],parameters_vector_upsampled_firstval[i,0], dmin=dmin,dmax=dmax) +# +# +# # plot(parameters_vector_upsampled_adm.T, 'r--') +# +# +# # plot(parameters_vector_upsampled.T) +# # plot(parameters_vector_upsampled_reconstructed.T, 'g.') +# +# +# +# parameters_vector_reconstructed = zeros(shape(parameters_vector)) +# for n in range(0, parameters_vector.shape[1]): +# parameters_vector_reconstructed[:,n] = parameters_vector_upsampled_reconstructed[:,n*UpsamplingFactor] +# +# +# mse_adm = mse(parameters_vector_reconstructed, parameters_vector) +# +# print "[II] Expected ADM reconstruction MSE: %.4f" % mse_adm +# +# # figure() +# #plot(parameters_vector.T) +# # plot(parameters_vector_reconstructed.T) +# +# print "[II] Building HMM transition, emission matrices and priors" +# +# transmat = zeros((3,3)) +# startprob = zeros((3,)) +# emissionmat = zeros((3, n_clusters)) +# +# +# state_labels = parameters_vector_upsampled_code + 1 +# stateseq = state_labels.T +# +# for n in range(0,shape(parameters_vector_upsampled_code)[1]): +# if n>0: +# transmat[state_labels[0,n-1],state_labels[0,n]] += 1 +# startprob[state_labels[0,n]] +=1 +# emissionmat[state_labels[0,n],feature_labels_upsampled[n]] += 1 +# +# +# for n in range(0, transmat.shape[0]): +# transmat[n,:]/=sum(transmat[n,:]) +# emissionmat[n,:]/=sum(emissionmat[n,:]) +# +# +# transmat = matrix(transmat) +# emissionmat = matrix(emissionmat) +# # Prior +# startprob = startprob/sum(startprob) +# startprob = ravel(startprob) +# +# # Vocabulary +# +# model = hmm.GMMHMM(n_mix=n_clusters, n_components=3, covariance_type="diag") +# model.means_ = features_clustering.means_ +# model.covars_ = features_clustering.covars_ +# +# features_vector_array = array(features_vector) +# features_vector_upsampled_array=array(features_vector_upsampled) +# +# model.fit([features_vector_array.T]) +# stateseq_estimated = model.predict(features_vector_upsampled_array.T) +# +# parameters_vector_upsampled_reconstructed_decoded = matrix(zeros(shape(parameters_vector_upsampled))) +# +# +# plot(stateseq_estimated) +# plot(stateseq) +# +# code_estimated = matrix(zeros(shape(parameters_vector_upsampled))) +# code_estimated[0,:] = stateseq_estimated - 1 +# +# +# +# parameters_vector_upsampled_reconstructed_estimated = matrix(zeros(shape(parameters_vector_upsampled))) +# +# for i in range(0, parameters_vector_upsampled.shape[0]): +# parameters_vector_upsampled_reconstructed_estimated[i,:] = adm_reconstruct(code_estimated,parameters_vector_upsampled_firstval[i,0], dmin=dmin,dmax=dmax) +# figure() +# plot(parameters_vector_upsampled_reconstructed_estimated.T) +# plot(parameters_vector_upsampled.T) \ No newline at end of file