Mercurial > hg > chourdakisreiss2016
comparison experiment-reverb/code/supervised_training_pca.py @ 0:246d5546657c
initial commit, needs cleanup
author | Emmanouil Theofanis Chourdakis <e.t.chourdakis@qmul.ac.uk> |
---|---|
date | Wed, 14 Dec 2016 13:15:48 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:246d5546657c |
---|---|
1 #!/usr/bin/python2 | |
2 # -*- coding: utf-8 -*- | |
3 """ | |
4 Created on Thu Apr 23 11:53:17 2015 | |
5 | |
6 @author: mmxgn | |
7 """ | |
8 | |
9 # This file does the cluster estimation and the removal of outliers | |
10 | |
11 from sys import argv, exit | |
12 from essentia.standard import YamlInput, YamlOutput | |
13 from essentia import Pool | |
14 from pca import * | |
15 | |
16 from numpy import * | |
17 from sklearn import cluster | |
18 from sklearn.metrics import pairwise_distances | |
19 from sklearn.cluster import KMeans, MiniBatchKMeans | |
20 import matplotlib.pyplot as plt | |
21 #from sklearn.mixture import GMM | |
22 from sklearn.naive_bayes import GaussianNB, MultinomialNB | |
23 from scipy.signal import decimate | |
24 from sklearn import cross_validation | |
25 | |
26 #from hmmlearn import hmm | |
27 from hmmlearn.hmm import GMM | |
28 from hmmlearn import hmm | |
29 #from adpcm import adm, adm_reconstruct | |
30 | |
31 | |
32 mse = lambda A,B: ((array(A)-array(B)) ** 2).mean() | |
33 | |
34 | |
35 def smooth_matrix_1D(X): | |
36 window = scipy.signal.gaussian(51,4) | |
37 window = window/sum(window) | |
38 intermx = zeros((X.shape[0],X.shape[1]+100)) | |
39 intermx[:, 50:-50] = X | |
40 | |
41 for m in range(0, X.shape[0]): | |
42 # print intermx.shape | |
43 intermx[m,:] = convolve(ravel(intermx[m,:]), window,'same') | |
44 | |
45 return intermx[:,50:-50] | |
46 | |
47 def adm_reconstruct(codeword, h, dmin=.01, dmax=.28): | |
48 x = zeros((1, codeword.shape[1])) | |
49 | |
50 delta1 = dmin | |
51 delta2 = dmin | |
52 Sum = h | |
53 | |
54 x[0] = h | |
55 for i in range(0, codeword.shape[1]): | |
56 if codeword[0,i] == 0: | |
57 delta1 = dmin | |
58 delta2 = dmin | |
59 | |
60 elif codeword[0,i] == 1: | |
61 delta2 = dmin | |
62 Sum += delta1 | |
63 delta1 *= 2 | |
64 if delta1 > dmax: | |
65 delta1 = dmax | |
66 | |
67 elif codeword[0,i] == -1: | |
68 delta1 = dmin | |
69 Sum -= delta2 | |
70 delta2 *= 2 | |
71 if delta2 > dmax: | |
72 delta2 = dmax | |
73 x[0,i] = Sum | |
74 return x | |
75 | |
76 def adm(x, dmin=.01, dmax=.28, tol=0.0001): | |
77 | |
78 # Adaptive delta modulation adapted by code: | |
79 # (adeltamod.m) | |
80 # | |
81 # Adaptive Delta Modulator | |
82 # by Gandhar Desai (gdesai) | |
83 # BITS Pilani Goa Campus | |
84 # Date: 28 Sept, 2013 | |
85 | |
86 xsig = x | |
87 | |
88 Lx = len(x) | |
89 | |
90 ADMout = zeros((1, Lx)) | |
91 codevec = zeros((1, Lx)) | |
92 | |
93 | |
94 Sum = x[0] | |
95 delta1 = dmin | |
96 delta2 = dmin | |
97 mult1 = 2 | |
98 mult2 = 2 | |
99 for i in range(0, Lx): | |
100 #print abs(xsig[i] - Sum) | |
101 if (abs(xsig[i] - Sum) < tol): | |
102 bit = 0 | |
103 delta2 = dmin | |
104 delta1 = dmin | |
105 | |
106 | |
107 elif (xsig[i] >= Sum): | |
108 bit = 1 | |
109 delta2 = dmin | |
110 Sum += delta1 | |
111 delta1 *= mult1 | |
112 if delta1 > dmax: | |
113 delta1 = dmax | |
114 | |
115 | |
116 else: | |
117 bit = -1 | |
118 delta1 = dmin | |
119 Sum -= delta2 | |
120 delta2 *= mult2 | |
121 if delta2 > dmax: | |
122 delta2 = dmax | |
123 | |
124 | |
125 | |
126 ADMout[0, i] = Sum | |
127 codevec[0, i]= bit | |
128 | |
129 return ADMout,codevec, x[0] | |
130 | |
131 if __name__=="__main__": | |
132 if len(argv) != 2: | |
133 print "[EE] Wrong number of arguments" | |
134 print "[II] Correct syntax is:" | |
135 print "[II] \t%s <training_file>" | |
136 print "[II] where <training_file> is a .yaml file containing the" | |
137 print "[II] features of the dataset (try output2_stage/fulltraining-last.yaml)" | |
138 exit(-1) | |
139 | |
140 | |
141 n_clusters = 2 | |
142 UpsamplingFactor = 1 | |
143 dmin = 0.001 | |
144 dmax = 0.28 | |
145 tol = 0.001 | |
146 | |
147 infile = argv[1] | |
148 | |
149 features_pool = YamlInput(filename = infile)() | |
150 | |
151 | |
152 | |
153 feature_captions = features_pool.descriptorNames() | |
154 parameter_captions = [] | |
155 | |
156 | |
157 for c in features_pool.descriptorNames(): | |
158 if c.split('.')[0] == 'parameter': | |
159 parameter_captions.append(c) | |
160 if c.split('.')[0] == 'metadata' or c.split('.')[0] == 'parameter': | |
161 feature_captions.remove(c) | |
162 | |
163 | |
164 | |
165 close('all') | |
166 | |
167 print "[II] Loaded training data from %s (%s) " % (infile, features_pool['metadata.date'][0]) | |
168 print "[II] %d Features Available: " % len(feature_captions) | |
169 | |
170 | |
171 | |
172 print str(feature_captions).replace("', ","\n").replace('[','').replace("'","[II]\t ")[:-7] | |
173 | |
174 nfeatures_in = len(feature_captions) | |
175 nparameters_in = len(parameter_captions) | |
176 1 features_vector = zeros((nfeatures_in, len(features_pool[feature_captions[0]]))) | |
177 | |
178 parameters_vector = zeros((nparameters_in, len(features_pool[parameter_captions[0]]))) | |
179 | |
180 | |
181 for i in range(0, nfeatures_in): | |
182 features_vector[i, :] = features_pool[feature_captions[i]].T | |
183 for i in range(0, nparameters_in): | |
184 parameters_vector[i, :] = features_pool[parameter_captions[0]].T | |
185 | |
186 print "[II] %d parameters used:" % len(parameter_captions) | |
187 print str(parameter_captions).replace("', ","\n").replace('[','').replace("'","[II]\t ")[:-7].replace('parameter.','') | |
188 | |
189 print "[II] Marking silent parts" | |
190 | |
191 silent_parts = zeros((1, len(features_pool[feature_captions[i]].T))) | |
192 | |
193 rms = features_vector[feature_captions.index('rms'), :] | |
194 | |
195 # Implementing Hysteresis Gate -- High threshold is halfway between | |
196 # the mean and the max and Low is halfway between the mean dn the min | |
197 | |
198 rms_threshold_mean = mean(rms) | |
199 | |
200 rms_threshold_max = max(rms) | |
201 rms_threshold_min = min(rms) | |
202 | |
203 rms_threshold_high = 0.1 * rms_threshold_mean | |
204 rms_threshold_low = 0.01 * rms_threshold_mean | |
205 | |
206 for n in range(1, len(rms)): | |
207 prev = rms[n-1] | |
208 curr = rms[n] | |
209 | |
210 if prev >= rms_threshold_high: | |
211 if curr < rms_threshold_low: | |
212 silent_parts[0,n] = 1 | |
213 else: | |
214 silent_parts[0,n] = 0 | |
215 elif prev <= rms_threshold_low: | |
216 if curr > rms_threshold_high: | |
217 silent_parts[0,n] = 0 | |
218 else: | |
219 silent_parts[0,n] = 1 | |
220 else: | |
221 silent_parts[0,n] = silent_parts[0,n-1] | |
222 | |
223 | |
224 if silent_parts[0,1] == 1: | |
225 silent_parts[0, 0] = 1 | |
226 | |
227 | |
228 # plot(rms) | |
229 # plot(silent_parts.T) | |
230 # plot(ones((len(rms), 1))*rms_threshold_high) | |
231 # plot(ones((len(rms), 1))*rms_threshold_low) | |
232 | |
233 active_index = invert(silent_parts.flatten().astype(bool)) | |
234 | |
235 # Keep only active parts | |
236 | |
237 # Uncomment this | |
238 features_vector = features_vector[:, active_index] | |
239 # parameters_vector = parameters_vector[:, active_index] | |
240 | |
241 moments_vector = zeros((features_vector.shape[0], 2)) | |
242 | |
243 print "[II] Storing moments vector" | |
244 for i in range(0, features_vector.shape[0]): | |
245 mean_ = mean(features_vector[i,:]) | |
246 std_ = std(features_vector[i,:], ddof=1) | |
247 moments_vector[i,0] = mean_ | |
248 moments_vector[i,1] = std_ | |
249 | |
250 features_vector[i,:] = (features_vector[i,:] - mean_)/std_ | |
251 | |
252 features_vector_original = features_vector | |
253 | |
254 | |
255 print "[II] Extracting PCA configuration " | |
256 | |
257 kernel, q, featurelist = extract_pca_configuration_from_data(features_vector) | |
258 | |
259 print "[II] Optimal number of PCs to keep: %d" % q | |
260 | |
261 feature_captions_array = array(feature_captions) | |
262 | |
263 # features_to_keep = features_vector | |
264 | |
265 features_to_keep = list(feature_captions_array[featurelist]) | |
266 print "[II] Decided to keep %d features:" % len(features_to_keep) | |
267 print str(features_to_keep).replace("', ","\n").replace('[','').replace("'","[II]\t ")[:-7] | |
268 | |
269 | |
270 | |
271 # Keep the desired features | |
272 #Uncomment this | |
273 features_kept_data = features_vector[featurelist,:] | |
274 # features_kept_data = features_vector | |
275 # features_kept_data = features_vector | |
276 | |
277 # Generate the parameter clusters using k-means | |
278 | |
279 # Uncomment this | |
280 features_vector = (kernel.T*features_kept_data)[0:q,:] | |
281 #features_vector = log(features_vector+0.001) | |
282 # features_vector = features_vector_original | |
283 | |
284 | |
285 # parameters_k_means = KMeans(n_clusters = parameters_k, init='k-means++', max_iter=300, tol=0.0000001, verbose = 1) | |
286 parameters_k_means = KMeans(init='k-means++', n_init=10, max_iter=300, tol=0.0000001, verbose = 0) | |
287 # # parameters_k_means = MiniBatchKMeans(init='k-means++', max_iter=300, tol=0.00001, verbose = 1) | |
288 # | |
289 # # Quantize the differences of the parameters instead of the parameters themselves | |
290 # parameters_vector_diff = concatenate((zeros((shape(parameters_vector)[0],1)),diff(parameters_vector, axis=1)),axis=1) | |
291 # features_vector_diff = concatenate((zeros((shape(features_vector)[0],1)),diff(features_vector,axis=1)),axis=1) | |
292 # | |
293 # # Delete this afterwards | |
294 # # features_vector = features_vector_diff | |
295 # parameters_k_means.fit(parameters_vector_diff.T) | |
296 | |
297 print "[II] Trying ADM-coded parameters" | |
298 print "[II] Upsampling features and parameters by a factor of %d" % UpsamplingFactor | |
299 | |
300 | |
301 # Upsampled features and parameters | |
302 features_vector_upsampled = smooth_matrix_1D(repeat(features_vector,UpsamplingFactor, axis=1)) | |
303 | |
304 # feature_labels_upsampled = repeat(features_clustering_labels,UpsamplingFactor, axis=0) | |
305 parameters_vector_upsampled = repeat(parameters_vector,UpsamplingFactor, axis=1) | |
306 | |
307 # parameters_vector_upsampled = smooth_matrix_1D(parameters_vector_upsampled) | |
308 | |
309 parameters_vector_upsampled_adm = matrix(zeros(shape(parameters_vector_upsampled))) | |
310 parameters_vector_upsampled_code = matrix(zeros(shape(parameters_vector_upsampled))) | |
311 parameters_vector_upsampled_firstval = matrix(zeros((parameters_vector_upsampled.shape[0],1))) | |
312 | |
313 # Reconstructed parameters | |
314 | |
315 parameters_vector_upsampled_reconstructed = matrix(zeros(shape(parameters_vector_upsampled))) | |
316 | |
317 | |
318 | |
319 | |
320 def adm_matrix(X, dmin=0.001,dmax=0.28,tol=0.001): | |
321 | |
322 out = matrix(zeros(shape(X))) | |
323 code = matrix(zeros(shape(X))) | |
324 firstval = matrix(zeros((X.shape[0], 1))) | |
325 | |
326 for i in range(0, X.shape[0]): | |
327 out[i,:], code[i,:], firstval[i,0] = adm(X[i,:],dmin=dmin,dmax=dmax,tol=tol) | |
328 | |
329 return out,code,firstval | |
330 | |
331 # parameters_vector_upsampled_reconstructed[i,:] = adm_reconstruct(parameters_vector_upsampled_code[i,:],parameters_vector_upsampled_firstval[i,0], dmin=dmin,dmax=dmax) | |
332 | |
333 def adm_matrix_reconstruct(code, firstval, dmin=0.001, dmax=0.28): | |
334 X = matrix(zeros(shape(code))) | |
335 for i in range(0, code.shape[0]): | |
336 X[i,:] = adm_reconstruct(code[i,:], firstval[i,0], dmin=dmin, dmax=dmax) | |
337 | |
338 return X | |
339 | |
340 | |
341 parameters_vector_upsampled_adm, parameters_vector_upsampled_code, parameters_vector_upsampled_firstval = adm_matrix(parameters_vector_upsampled, dmin, dmax, tol) | |
342 | |
343 | |
344 def diff_and_pad(X): | |
345 return concatenate(( | |
346 zeros(( | |
347 shape(X)[0], | |
348 1 | |
349 )), | |
350 diff(X, axis=1)), | |
351 axis=1) | |
352 | |
353 | |
354 # features_vector_upsampled = features_vector_upsampled | |
355 | |
356 | |
357 # features_vector_upsampled = diff_and_pad(features_vector_upsampled) | |
358 | |
359 | |
360 # features_vector_diff = concatenate((zeros((shape(features_vector)[0],1)),diff(features_vector,axis=1)),axis=1) | |
361 | |
362 | |
363 | |
364 # Segmentation stuff | |
365 | |
366 | |
367 | |
368 # for i in range(0, parameters_vector_upsampled.shape[0]): | |
369 # out, code, h = adm(parameters_vector_upsampled[i,:],dmin=dmin,dmax=dmax,tol=tol) | |
370 # parameters_vector_upsampled_adm[i,:] = out | |
371 # parameters_vector_upsampled_code[i,:] = code | |
372 # parameters_vector_upsampled_firstval[i, 0] = h | |
373 | |
374 # parameters_k_means.fit(parameters_vector.T) | |
375 ## | |
376 # parameters_k_means_centers = parameters_k_means.cluster_centers_ | |
377 # parameters_k_means_labels = parameters_k_means.labels_ | |
378 ## | |
379 # parameters_vector_estimated = zeros(shape(parameters_vector)) | |
380 ## | |
381 # for n in range(0, len(parameters_vector_estimated[0])): | |
382 # parameters_vector_estimated[:,n] = parameters_k_means_centers[parameters_k_means_labels[n]] | |
383 ## | |
384 ### plot(parameters_vector[0]) | |
385 ## # plot(parameters_vector_estimated[0]) | |
386 ## | |
387 ## # PROvLIMA EDW | |
388 # print "[II] Parameters MSE for %d clusters: %.3f" % (len(parameters_k_means.cluster_centers_), mse(parameters_vector, parameters_vector_estimated)) | |
389 # | |
390 ## | |
391 print "[II] Clustering features." | |
392 # | |
393 features_clustering = GMM(n_components = n_clusters, covariance_type='full') | |
394 # | |
395 features_clustering.fit( features_vector_upsampled.T, y=parameters_vector_upsampled_code) | |
396 # | |
397 features_clustering_means = features_clustering.means_ | |
398 features_clustering_labels = features_clustering.predict(features_vector_upsampled.T) | |
399 features_clustering_sigmas = features_clustering.covars_ | |
400 # | |
401 features_vector_upsampled_estimated = zeros(shape(features_vector_upsampled)) | |
402 # | |
403 # | |
404 for n in range(0, len(features_vector_upsampled_estimated[0])): | |
405 features_vector_upsampled_estimated[:,n] = features_clustering_means[features_clustering_labels[n]] | |
406 # | |
407 # # for n in range(0,features_vector.shape[0]): | |
408 # # hist(features_vector[1]-features_vector_estimated[1], 256) | |
409 # std(features_vector[1]-features_vector_estimated[1], ddof=1) | |
410 # mean(features_vector[1]-features_vector_estimated[1]) | |
411 # | |
412 print "[II] Features MSE for %d clusters: %.3f" % (n_clusters, mse(features_vector_upsampled, features_vector_upsampled_estimated)) | |
413 | |
414 | |
415 | |
416 def cross_validate_clustering(data, estimator): | |
417 print "[II] Crossvalidating... " | |
418 estimator_fulldata = estimator | |
419 estimator_fulldata.fit(data) | |
420 | |
421 # labels = estimator_fulldata.predict(data) | |
422 means = estimator_fulldata.means_ | |
423 # print means | |
424 | |
425 percents = arange(0.1,0.6,0.1) | |
426 MSEs = [] | |
427 reconstructed = zeros(shape(data)) | |
428 labels = estimator.predict(data) | |
429 for n in range(0, len(reconstructed)): | |
430 reconstructed[n,:] = means[labels[n]] | |
431 | |
432 MSEs.append(mse(data,reconstructed)) | |
433 for p in percents: | |
434 train,test = cross_validation.train_test_split(data,test_size=p,random_state=0) | |
435 train = matrix(train) | |
436 test = matrix(test) | |
437 # print shape(train) | |
438 # print shape(test) | |
439 estimator.fit(train) | |
440 means = estimator.means_ | |
441 labels = estimator.predict(test) | |
442 reconstructed = zeros(shape(test)) | |
443 for n in range(0, len(reconstructed)): | |
444 reconstructed[n,:] = means[labels[n]] | |
445 | |
446 m = mse(test,reconstructed) | |
447 | |
448 print "[II] MSE for clustering crossvalidated data %.2f-%.2f: %.5f" % ((1-p), p, m) | |
449 MSEs.append(m) | |
450 | |
451 print "[II] Crossvalidation complete" | |
452 | |
453 return MSEs | |
454 | |
455 # print "[II] Trying Cross Validation" | |
456 | |
457 # cross_validate_clustering(features_vector_upsampled.T, features_clustering) | |
458 | |
459 | |
460 # Construct parameters alphabet, each symbol is going to be a different column vector | |
461 # in parameter code matrix | |
462 | |
463 | |
464 def vector_to_states(X): | |
465 """ | |
466 Input: a vector MxN with N samples and M variables | |
467 Output: a codeword dictionary `parameters_alphabet', | |
468 state_seq, inverse `parameters_alphabet_inv' """ | |
469 | |
470 | |
471 parameters_alphabet = {} | |
472 n = 0 | |
473 | |
474 for i in range(0, X.shape[1]): | |
475 vec = tuple(ravel(X[:,i])) | |
476 if vec not in parameters_alphabet: | |
477 parameters_alphabet[vec] = n | |
478 n += 1 | |
479 | |
480 parameters_alphabet_inv = dict([(parameters_alphabet[m],m) for m in parameters_alphabet]) | |
481 | |
482 state_seq = array([parameters_alphabet[tuple(ravel(X[:,m]))] for m in range(0, parameters_vector_upsampled_code.shape[1])] ) | |
483 | |
484 return state_seq, parameters_alphabet, parameters_alphabet_inv | |
485 | |
486 | |
487 def states_to_vector(predicted, parameters_alphabet_inv): | |
488 estimated = matrix(zeros((len(parameters_alphabet_inv[0]), len(predicted)))) | |
489 for i in range(0, len(state_seq)): | |
490 estimated[:, i] = matrix(parameters_alphabet_inv[predicted[i]]).T | |
491 | |
492 return estimated | |
493 | |
494 state_seq, parameters_alphabet, parameters_alphabet_inv = vector_to_states(parameters_vector_upsampled_code) | |
495 | |
496 | |
497 parameters_change_variable = matrix(diff_and_pad(parameters_vector_upsampled)!=0).astype(int) | |
498 | |
499 changes_state_seq, changes_parameters_alphabet, changes_parameters_alphabet_inv = vector_to_states(parameters_change_variable) | |
500 | |
501 | |
502 # This is an hmm that just codes the changes" | |
503 # We have only two states, change and stay the same. | |
504 | |
505 | |
506 print "[II] Creating emission probability mixtures for every state " | |
507 parameters_state, parameter_state_alphabet, parameter_state_alphabet_inv = vector_to_states(parameters_vector_upsampled) | |
508 | |
509 gmm_list_changes = [] | |
510 for n in range(0, len(parameter_state_alphabet)): | |
511 vectors = features_vector_upsampled[:,parameters_state == n] | |
512 gmm = GMM(n_components=n_clusters, covariance_type = 'diag') | |
513 gmm.fit(vectors.T) | |
514 gmm_list_changes.append(gmm) | |
515 | |
516 | |
517 hmm_changes = hmm.GMMHMM(n_components=len(parameter_state_alphabet), gmms=array(gmm_list_changes),n_mix=n_clusters) | |
518 hmm_changes.fit([array(features_vector_upsampled).T]) | |
519 | |
520 # subplot(211) | |
521 # plot(parameters_change_variable.T) | |
522 | |
523 subplot(211), plot(parameters_vector_upsampled.T) | |
524 subplot(212) | |
525 | |
526 predicted_states = hmm_changes.predict(array(features_vector_upsampled.T)) | |
527 predicted_states_estimated = states_to_vector(predicted_states, parameter_state_alphabet_inv) | |
528 | |
529 plot(predicted_states_estimated.T) | |
530 | |
531 | |
532 # print "[II] (changes hmm-chain) Creating emission probability mixtures for every state " | |
533 # | |
534 # gmm_list_changes = [] | |
535 # for n in range(0, 2): | |
536 # vectors = features_vector_upsampled[:,changes_state_seq == n] | |
537 # gmm = GMM(n_components=n_clusters, covariance_type = 'diag') | |
538 # gmm.fit(vectors.T) | |
539 # gmm_list_changes.append(gmm) | |
540 # | |
541 # | |
542 # hmm_changes = hmm.GMMHMM(n_components=2, gmms=array(gmm_list_changes),n_mix=n_clusters) | |
543 # hmm_changes.fit([array(features_vector_upsampled).T]) | |
544 # | |
545 # subplot(211) | |
546 # plot(parameters_change_variable.T) | |
547 # subplot(212) | |
548 # | |
549 # changes_predicted_states = hmm_changes.predict(array(features_vector_upsampled.T)) | |
550 # predicted_changes_estimated = states_to_vector(changes_predicted_states, changes_parameters_alphabet_inv) | |
551 # | |
552 # plot(predicted_changes_estimated.T) | |
553 | |
554 | |
555 | |
556 | |
557 # End of changes HMM here | |
558 | |
559 | |
560 print "[II] Creating emission probability mixtures for every state" | |
561 gmm_list = [] | |
562 for n in range(0, 3): | |
563 vectors = features_vector_upsampled[:,state_seq == n] | |
564 gmm = GMM(n_components=n_clusters,covariance_type = 'diag') | |
565 gmm.fit(vectors.T) | |
566 gmm_list.append(gmm) | |
567 | |
568 hmm1 = hmm.GMMHMM(n_components=3, gmms=array(gmm_list),n_mix=n_clusters) | |
569 hmm1.fit([array(features_vector_upsampled).T]) | |
570 | |
571 figure() | |
572 subplot(221) | |
573 plot(parameters_vector_upsampled_code.T) | |
574 | |
575 predicted = hmm1.predict(array(features_vector_upsampled.T)) | |
576 | |
577 code_estimated = matrix(zeros((len(parameters_vector_upsampled), len(state_seq)))) | |
578 | |
579 # for i in range(0, len(state_seq)): | |
580 # code_estimated[:, i] = matrix(parameters_alphabet_inv[predicted[i]]).T | |
581 | |
582 code_estimated = states_to_vector(predicted,parameters_alphabet_inv) | |
583 subplot(222) | |
584 plot(code_estimated.T) | |
585 | |
586 reconstructed_original = adm_matrix_reconstruct(parameters_vector_upsampled_code, parameters_vector_upsampled_firstval) | |
587 subplot(223) | |
588 plot(reconstructed_original.T) | |
589 subplot(224) | |
590 reconstructed_estimated = adm_matrix_reconstruct(code_estimated, parameters_vector_upsampled_firstval) | |
591 plot(reconstructed_estimated.T) | |
592 | |
593 # scatter(features_vector_upsampled[0,:],features_vector_upsampled_estimated[0,:]) | |
594 # scatter(features_vector_upsampled[1,:],features_vector_upsampled_estimated[1,:]) | |
595 # | |
596 # xlabel('Original Features on Principal Components') | |
597 # ylabel('Estimated Features on Principal Components') | |
598 # title('Original vs Estimated Features') | |
599 # savefig('original_vs_estimated.png') | |
600 | |
601 | |
602 | |
603 # | |
604 # | |
605 print "[II] Testing Gaussian Naive Bayes Classifier" | |
606 ## | |
607 gnb = GaussianNB() | |
608 gnb.fit(features_vector_upsampled.T, parameters_state) | |
609 | |
610 parameters_state_estimated = gnb.predict(features_vector_upsampled.T) | |
611 | |
612 output = states_to_vector(parameters_state_estimated, parameter_state_alphabet_inv) | |
613 | |
614 figure() | |
615 subplot(211) | |
616 plot(parameters_vector_upsampled.T) | |
617 subplot(212) | |
618 plot(smooth_matrix_1D(output.T)) | |
619 # parameters_vector_upsampled_code_estimated = gnb.predict(features_vector_upsampled.T) | |
620 # | |
621 # | |
622 ## | |
623 # print "[II] Raw Parameters - Gaussian Naive Bayes classifier testing ratio: %.4f" % (float(sum((parameters_vector_upsampled_code_estimated == parameters_vector_upsampled_code).astype(float)))/float(len(parameters_k_means_labels))) | |
624 ## | |
625 # plot(adm_matrix_reconstruct(parameters_vector_upsampled_code_estimated,parameters_vector_upsampled_firstval,dmin,dmax).T) | |
626 # | |
627 # print "[II] Trying ADM-coded parameters" | |
628 # UpsamplingFactor = 100 | |
629 # print "[II] Upsampling features and parameters by a factor of %d" % UpsamplingFactor | |
630 # | |
631 # | |
632 # # Upsampled features and parameters | |
633 # features_vector_upsampled = repeat(features_vector,UpsamplingFactor, axis=1) | |
634 # feature_labels_upsampled = repeat(features_clustering_labels,UpsamplingFactor, axis=0) | |
635 # parameters_vector_upsampled = repeat(parameters_vector,UpsamplingFactor, axis=1) | |
636 # | |
637 # parameters_vector_upsampled_adm = matrix(zeros(shape(parameters_vector_upsampled))) | |
638 # parameters_vector_upsampled_code = matrix(zeros(shape(parameters_vector_upsampled))) | |
639 # parameters_vector_upsampled_firstval = matrix(zeros((parameters_vector_upsampled.shape[0],1))) | |
640 # | |
641 # # Reconstructed parameters | |
642 # | |
643 # parameters_vector_upsampled_reconstructed = matrix(zeros(shape(parameters_vector_upsampled))) | |
644 # | |
645 # dmin = 0.001 | |
646 # dmax = 0.28 | |
647 # tol = 0.001 | |
648 # for i in range(0, parameters_vector_upsampled.shape[0]): | |
649 # out, code, h = adm(parameters_vector_upsampled[i,:],dmin=dmin,dmax=dmax,tol=tol) | |
650 # parameters_vector_upsampled_adm[i,:] = out | |
651 # parameters_vector_upsampled_code[i,:] = code | |
652 # parameters_vector_upsampled_firstval[i, 0] = h | |
653 # | |
654 # | |
655 # # Reconstruct-ADM | |
656 # parameters_vector_upsampled_reconstructed[i,:] = adm_reconstruct(parameters_vector_upsampled_code[i,:],parameters_vector_upsampled_firstval[i,0], dmin=dmin,dmax=dmax) | |
657 # | |
658 # | |
659 # # plot(parameters_vector_upsampled_adm.T, 'r--') | |
660 # | |
661 # | |
662 # # plot(parameters_vector_upsampled.T) | |
663 # # plot(parameters_vector_upsampled_reconstructed.T, 'g.') | |
664 # | |
665 # | |
666 # | |
667 # parameters_vector_reconstructed = zeros(shape(parameters_vector)) | |
668 # for n in range(0, parameters_vector.shape[1]): | |
669 # parameters_vector_reconstructed[:,n] = parameters_vector_upsampled_reconstructed[:,n*UpsamplingFactor] | |
670 # | |
671 # | |
672 # mse_adm = mse(parameters_vector_reconstructed, parameters_vector) | |
673 # | |
674 # print "[II] Expected ADM reconstruction MSE: %.4f" % mse_adm | |
675 # | |
676 # # figure() | |
677 # #plot(parameters_vector.T) | |
678 # # plot(parameters_vector_reconstructed.T) | |
679 # | |
680 # print "[II] Building HMM transition, emission matrices and priors" | |
681 # | |
682 # transmat = zeros((3,3)) | |
683 # startprob = zeros((3,)) | |
684 # emissionmat = zeros((3, n_clusters)) | |
685 # | |
686 # | |
687 # state_labels = parameters_vector_upsampled_code + 1 | |
688 # stateseq = state_labels.T | |
689 # | |
690 # for n in range(0,shape(parameters_vector_upsampled_code)[1]): | |
691 # if n>0: | |
692 # transmat[state_labels[0,n-1],state_labels[0,n]] += 1 | |
693 # startprob[state_labels[0,n]] +=1 | |
694 # emissionmat[state_labels[0,n],feature_labels_upsampled[n]] += 1 | |
695 # | |
696 # | |
697 # for n in range(0, transmat.shape[0]): | |
698 # transmat[n,:]/=sum(transmat[n,:]) | |
699 # emissionmat[n,:]/=sum(emissionmat[n,:]) | |
700 # | |
701 # | |
702 # transmat = matrix(transmat) | |
703 # emissionmat = matrix(emissionmat) | |
704 # # Prior | |
705 # startprob = startprob/sum(startprob) | |
706 # startprob = ravel(startprob) | |
707 # | |
708 # # Vocabulary | |
709 # | |
710 # model = hmm.GMMHMM(n_mix=n_clusters, n_components=3, covariance_type="diag") | |
711 # model.means_ = features_clustering.means_ | |
712 # model.covars_ = features_clustering.covars_ | |
713 # | |
714 # features_vector_array = array(features_vector) | |
715 # features_vector_upsampled_array=array(features_vector_upsampled) | |
716 # | |
717 # model.fit([features_vector_array.T]) | |
718 # stateseq_estimated = model.predict(features_vector_upsampled_array.T) | |
719 # | |
720 # parameters_vector_upsampled_reconstructed_decoded = matrix(zeros(shape(parameters_vector_upsampled))) | |
721 # | |
722 # | |
723 # plot(stateseq_estimated) | |
724 # plot(stateseq) | |
725 # | |
726 # code_estimated = matrix(zeros(shape(parameters_vector_upsampled))) | |
727 # code_estimated[0,:] = stateseq_estimated - 1 | |
728 # | |
729 # | |
730 # | |
731 # parameters_vector_upsampled_reconstructed_estimated = matrix(zeros(shape(parameters_vector_upsampled))) | |
732 # | |
733 # for i in range(0, parameters_vector_upsampled.shape[0]): | |
734 # parameters_vector_upsampled_reconstructed_estimated[i,:] = adm_reconstruct(code_estimated,parameters_vector_upsampled_firstval[i,0], dmin=dmin,dmax=dmax) | |
735 # figure() | |
736 # plot(parameters_vector_upsampled_reconstructed_estimated.T) | |
737 # plot(parameters_vector_upsampled.T) |