Mercurial > hg > chourdakisreiss2016
comparison experiment-reverb/code/supervised_training_hmms_higher_orderpy @ 0:246d5546657c
initial commit, needs cleanup
author | Emmanouil Theofanis Chourdakis <e.t.chourdakis@qmul.ac.uk> |
---|---|
date | Wed, 14 Dec 2016 13:15:48 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:246d5546657c |
---|---|
1 #!/usr/bin/python2 | |
2 # -*- coding: utf-8 -*- | |
3 """ | |
4 Created on Thu Apr 23 11:53:17 2015 | |
5 | |
6 @author: mmxgn | |
7 """ | |
8 | |
9 # This file does the cluster estimation and the removal of outliers | |
10 | |
11 from sys import argv, exit | |
12 from essentia.standard import YamlInput, YamlOutput | |
13 from essentia import Pool | |
14 from pca import * | |
15 | |
16 from numpy import * | |
17 from sklearn import cluster | |
18 from sklearn.metrics import pairwise_distances | |
19 from sklearn.cluster import KMeans, MiniBatchKMeans | |
20 from matplotlib.pyplot import * | |
21 #from sklearn.mixture import GMM | |
22 from sklearn.naive_bayes import GaussianNB, MultinomialNB | |
23 from scipy.signal import decimate | |
24 from sklearn import cross_validation | |
25 | |
26 #from hmmlearn import hmm | |
27 from hmmlearn.hmm import GMM | |
28 from hmmlearn import hmm | |
29 #from adpcm import adm, adm_reconstruct | |
30 | |
31 | |
32 mse = lambda A,B: ((array(A)-array(B)) ** 2).mean() | |
33 | |
34 | |
35 def smooth_matrix_1D(X): | |
36 window = scipy.signal.gaussian(51,4) | |
37 window = window/sum(window) | |
38 intermx = zeros((X.shape[0],X.shape[1]+100)) | |
39 intermx[:, 50:-50] = X | |
40 | |
41 for m in range(0, X.shape[0]): | |
42 # print intermx.shape | |
43 intermx[m,:] = convolve(ravel(intermx[m,:]), window,'same') | |
44 | |
45 return intermx[:,50:-50] | |
46 | |
47 def adm_reconstruct(codeword, h, dmin=.01, dmax=.28): | |
48 x = zeros((1, codeword.shape[1])) | |
49 | |
50 delta1 = dmin | |
51 delta2 = dmin | |
52 Sum = h | |
53 | |
54 x[0] = h | |
55 for i in range(0, codeword.shape[1]): | |
56 if codeword[0,i] == 0: | |
57 delta1 = dmin | |
58 delta2 = dmin | |
59 | |
60 elif codeword[0,i] == 1: | |
61 delta2 = dmin | |
62 Sum += delta1 | |
63 delta1 *= 2 | |
64 if delta1 > dmax: | |
65 delta1 = dmax | |
66 | |
67 elif codeword[0,i] == -1: | |
68 delta1 = dmin | |
69 Sum -= delta2 | |
70 delta2 *= 2 | |
71 if delta2 > dmax: | |
72 delta2 = dmax | |
73 x[0,i] = Sum | |
74 return x | |
75 | |
76 def adm(x, dmin=.01, dmax=.28, tol=0.0001): | |
77 | |
78 # Adaptive delta modulation adapted by code: | |
79 # (adeltamod.m) | |
80 # | |
81 # Adaptive Delta Modulator | |
82 # by Gandhar Desai (gdesai) | |
83 # BITS Pilani Goa Campus | |
84 # Date: 28 Sept, 2013 | |
85 | |
86 xsig = x | |
87 | |
88 Lx = len(x) | |
89 | |
90 ADMout = zeros((1, Lx)) | |
91 codevec = zeros((1, Lx)) | |
92 | |
93 | |
94 Sum = x[0] | |
95 delta1 = dmin | |
96 delta2 = dmin | |
97 mult1 = 2 | |
98 mult2 = 2 | |
99 for i in range(0, Lx): | |
100 #print abs(xsig[i] - Sum) | |
101 if (abs(xsig[i] - Sum) < tol): | |
102 bit = 0 | |
103 delta2 = dmin | |
104 delta1 = dmin | |
105 | |
106 | |
107 elif (xsig[i] >= Sum): | |
108 bit = 1 | |
109 delta2 = dmin | |
110 Sum += delta1 | |
111 delta1 *= mult1 | |
112 if delta1 > dmax: | |
113 delta1 = dmax | |
114 | |
115 | |
116 else: | |
117 bit = -1 | |
118 delta1 = dmin | |
119 Sum -= delta2 | |
120 delta2 *= mult2 | |
121 if delta2 > dmax: | |
122 delta2 = dmax | |
123 | |
124 | |
125 | |
126 ADMout[0, i] = Sum | |
127 codevec[0, i]= bit | |
128 | |
129 return ADMout,codevec, x[0] | |
130 | |
131 if __name__=="__main__": | |
132 if len(argv) != 2: | |
133 print "[EE] Wrong number of arguments" | |
134 print "[II] Correct syntax is:" | |
135 print "[II] \t%s <training_file>" | |
136 print "[II] where <training_file> is a .yaml file containing the" | |
137 print "[II] features of the dataset (try output2_stage/fulltraining-last.yaml)" | |
138 exit(-1) | |
139 | |
140 | |
141 n_clusters = 25 | |
142 UpsamplingFactor = 10 | |
143 dmin = 0.001 | |
144 dmax = 0.28 | |
145 tol = 0.001 | |
146 | |
147 infile = argv[1] | |
148 | |
149 features_pool = YamlInput(filename = infile)() | |
150 | |
151 | |
152 | |
153 feature_captions = features_pool.descriptorNames() | |
154 parameter_captions = [] | |
155 | |
156 | |
157 for c in features_pool.descriptorNames(): | |
158 if c.split('.')[0] == 'parameter': | |
159 parameter_captions.append(c) | |
160 if c.split('.')[0] == 'metadata' or c.split('.')[0] == 'parameter': | |
161 feature_captions.remove(c) | |
162 | |
163 | |
164 | |
165 # close('all') | |
166 | |
167 print "[II] Loaded training data from %s (%s) " % (infile, features_pool['metadata.date'][0]) | |
168 print "[II] %d Features Available: " % len(feature_captions) | |
169 | |
170 | |
171 | |
172 print str(feature_captions).replace("', ","\n").replace('[','').replace("'","[II]\t ")[:-7] | |
173 | |
174 nfeatures_in = len(feature_captions) | |
175 nparameters_in = len(parameter_captions) | |
176 features_vector = zeros((nfeatures_in, len(features_pool[feature_captions[0]]))) | |
177 | |
178 parameters_vector = zeros((nparameters_in, len(features_pool[parameter_captions[0]]))) | |
179 | |
180 | |
181 for i in range(0, nfeatures_in): | |
182 features_vector[i, :] = features_pool[feature_captions[i]].T | |
183 for i in range(0, nparameters_in): | |
184 parameters_vector[i, :] = features_pool[parameter_captions[0]].T | |
185 | |
186 print "[II] %d parameters used:" % len(parameter_captions) | |
187 print str(parameter_captions).replace("', ","\n").replace('[','').replace("'","[II]\t ")[:-7].replace('parameter.','') | |
188 | |
189 print "[II] Marking silent parts" | |
190 | |
191 silent_parts = zeros((1, len(features_pool[feature_captions[i]].T))) | |
192 | |
193 rms = features_vector[feature_captions.index('rms'), :] | |
194 | |
195 # Implementing Hysteresis Gate -- High threshold is halfway between | |
196 # the mean and the max and Low is halfway between the mean dn the min | |
197 | |
198 rms_threshold_mean = mean(rms) | |
199 | |
200 rms_threshold_max = max(rms) | |
201 rms_threshold_min = min(rms) | |
202 | |
203 rms_threshold_high = 0.1 * rms_threshold_mean | |
204 rms_threshold_low = 0.01 * rms_threshold_mean | |
205 | |
206 for n in range(1, len(rms)): | |
207 prev = rms[n-1] | |
208 curr = rms[n] | |
209 | |
210 if prev >= rms_threshold_high: | |
211 if curr < rms_threshold_low: | |
212 silent_parts[0,n] = 1 | |
213 else: | |
214 silent_parts[0,n] = 0 | |
215 elif prev <= rms_threshold_low: | |
216 if curr > rms_threshold_high: | |
217 silent_parts[0,n] = 0 | |
218 else: | |
219 silent_parts[0,n] = 1 | |
220 else: | |
221 silent_parts[0,n] = silent_parts[0,n-1] | |
222 | |
223 | |
224 if silent_parts[0,1] == 1: | |
225 silent_parts[0, 0] = 1 | |
226 | |
227 | |
228 | |
229 active_index = invert(silent_parts.flatten().astype(bool)) | |
230 | |
231 # Keep only active parts | |
232 | |
233 # Uncomment this | |
234 features_vector = features_vector[:, active_index] | |
235 | |
236 moments_vector = zeros((features_vector.shape[0], 2)) | |
237 | |
238 print "[II] Storing moments vector" | |
239 for i in range(0, features_vector.shape[0]): | |
240 mean_ = mean(features_vector[i,:]) | |
241 std_ = std(features_vector[i,:], ddof=1) | |
242 moments_vector[i,0] = mean_ | |
243 moments_vector[i,1] = std_ | |
244 | |
245 features_vector[i,:] = (features_vector[i,:] - mean_)/std_ | |
246 | |
247 features_vector_original = features_vector | |
248 | |
249 | |
250 print "[II] Extracting PCA configuration " | |
251 | |
252 kernel, q, featurelist = extract_pca_configuration_from_data(features_vector) | |
253 | |
254 print "[II] Optimal number of PCs to keep: %d" % q | |
255 | |
256 feature_captions_array = array(feature_captions) | |
257 | |
258 features_to_keep = list(feature_captions_array[featurelist]) | |
259 print "[II] Decided to keep %d features:" % len(features_to_keep) | |
260 print str(features_to_keep).replace("', ","\n").replace('[','').replace("'","[II]\t ")[:-7] | |
261 | |
262 | |
263 features_kept_data = features_vector[featurelist,:] | |
264 | |
265 features_vector = (kernel.T*features_kept_data)[0:q,:] | |
266 | |
267 parameters_k_means = KMeans(init='k-means++', n_init=10, max_iter=300, tol=0.0000001, verbose = 0) | |
268 | |
269 print "[II] Trying ADM-coded parameters" | |
270 print "[II] Upsampling features and parameters by a factor of %d" % UpsamplingFactor | |
271 | |
272 | |
273 # Upsampled features and parameters | |
274 features_vector_upsampled = smooth_matrix_1D(repeat(features_vector,UpsamplingFactor, axis=1)) | |
275 | |
276 # feature_labels_upsampled = repeat(features_clustering_labels,UpsamplingFactor, axis=0) | |
277 parameters_vector_upsampled = repeat(parameters_vector,UpsamplingFactor, axis=1) | |
278 | |
279 # parameters_vector_upsampled = smooth_matrix_1D(parameters_vector_upsampled) | |
280 | |
281 parameters_vector_upsampled_adm = matrix(zeros(shape(parameters_vector_upsampled))) | |
282 parameters_vector_upsampled_code = matrix(zeros(shape(parameters_vector_upsampled))) | |
283 parameters_vector_upsampled_firstval = matrix(zeros((parameters_vector_upsampled.shape[0],1))) | |
284 | |
285 # Reconstructed parameters | |
286 | |
287 parameters_vector_upsampled_reconstructed = matrix(zeros(shape(parameters_vector_upsampled))) | |
288 | |
289 | |
290 | |
291 | |
292 def adm_matrix(X, dmin=0.001,dmax=0.28,tol=0.001): | |
293 | |
294 out = matrix(zeros(shape(X))) | |
295 code = matrix(zeros(shape(X))) | |
296 firstval = matrix(zeros((X.shape[0], 1))) | |
297 | |
298 for i in range(0, X.shape[0]): | |
299 out[i,:], code[i,:], firstval[i,0] = adm(X[i,:],dmin=dmin,dmax=dmax,tol=tol) | |
300 | |
301 return out,code,firstval | |
302 | |
303 # parameters_vector_upsampled_reconstructed[i,:] = adm_reconstruct(parameters_vector_upsampled_code[i,:],parameters_vector_upsampled_firstval[i,0], dmin=dmin,dmax=dmax) | |
304 | |
305 def adm_matrix_reconstruct(code, firstval, dmin=0.001, dmax=0.28): | |
306 X = matrix(zeros(shape(code))) | |
307 for i in range(0, code.shape[0]): | |
308 X[i,:] = adm_reconstruct(code[i,:], firstval[i,0], dmin=dmin, dmax=dmax) | |
309 | |
310 return X | |
311 | |
312 | |
313 parameters_vector_upsampled_adm, parameters_vector_upsampled_code, parameters_vector_upsampled_firstval = adm_matrix(parameters_vector_upsampled, dmin, dmax, tol) | |
314 | |
315 | |
316 def diff_and_pad(X): | |
317 return concatenate(( | |
318 zeros(( | |
319 shape(X)[0], | |
320 1 | |
321 )), | |
322 diff(X, axis=1)), | |
323 axis=1) | |
324 | |
325 | |
326 print "[II] Clustering features." | |
327 # | |
328 features_clustering = GMM(n_components = n_clusters, covariance_type='diag') | |
329 # | |
330 features_clustering.fit( features_vector_upsampled.T, y=parameters_vector_upsampled_code) | |
331 # | |
332 features_clustering_means = features_clustering.means_ | |
333 features_clustering_labels = features_clustering.predict(features_vector_upsampled.T) | |
334 features_clustering_sigmas = features_clustering.covars_ | |
335 # | |
336 features_vector_upsampled_estimated = zeros(shape(features_vector_upsampled)) | |
337 # | |
338 # | |
339 for n in range(0, len(features_vector_upsampled_estimated[0])): | |
340 features_vector_upsampled_estimated[:,n] = features_clustering_means[features_clustering_labels[n]] | |
341 # | |
342 # | |
343 print "[II] Features MSE for %d clusters: %.3f" % (n_clusters, mse(features_vector_upsampled, features_vector_upsampled_estimated)) | |
344 | |
345 | |
346 | |
347 | |
348 def cross_validate_classification(data, classes, estimator): | |
349 print "[II] Crossvalidating... " | |
350 from copy import deepcopy | |
351 estimator_fulldata = deepcopy(estimator) | |
352 estimator_fulldata.fit(data, classes) | |
353 | |
354 percents = arange(0.1,0.9,0.1) | |
355 MSEs = [] | |
356 labels = estimator.predict(data) | |
357 | |
358 print "[II] for full training-testing: %.2f" % (sum(array(classes==labels).astype(float))/len(labels)) | |
359 | |
360 for p in percents: | |
361 train,test,trainlabels,testlabels = cross_validation.train_test_split(data,classes,test_size=p,random_state=0) | |
362 estimator_ = deepcopy(estimator) | |
363 estimator_.fit(train, trainlabels) | |
364 labels = estimator.predict(test) | |
365 print "[II] for training(%.2f)-testing(%.2f): %.2f" % ((1-p),p,sum(array(testlabels==labels).astype(float))/len(labels)) | |
366 | |
367 return MSEs | |
368 | |
369 def cross_validate_clustering(data, estimator): | |
370 print "[II] Crossvalidating... " | |
371 estimator_fulldata = estimator | |
372 estimator_fulldata.fit(data) | |
373 | |
374 # labels = estimator_fulldata.predict(data) | |
375 means = estimator_fulldata.means_ | |
376 # print means | |
377 | |
378 percents = arange(0.1,0.6,0.1) | |
379 MSEs = [] | |
380 reconstructed = zeros(shape(data)) | |
381 labels = estimator.predict(data) | |
382 for n in range(0, len(reconstructed)): | |
383 reconstructed[n,:] = means[labels[n]] | |
384 | |
385 MSEs.append(mse(data,reconstructed)) | |
386 for p in percents: | |
387 train,test = cross_validation.train_test_split(data,test_size=p,random_state=0) | |
388 train = matrix(train) | |
389 test = matrix(test) | |
390 | |
391 estimator.fit(train) | |
392 means = estimator.means_ | |
393 labels = estimator.predict(test) | |
394 reconstructed = zeros(shape(test)) | |
395 for n in range(0, len(reconstructed)): | |
396 reconstructed[n,:] = means[labels[n]] | |
397 | |
398 m = mse(test,reconstructed) | |
399 | |
400 print "[II] MSE for clustering crossvalidated data %.2f-%.2f: %.5f" % ((1-p), p, m) | |
401 MSEs.append(m) | |
402 | |
403 print "[II] Crossvalidation complete" | |
404 | |
405 return MSEs | |
406 | |
407 | |
408 | |
409 | |
410 # Construct parameters alphabet, each symbol is going to be a different column vector | |
411 # in parameter code matrix | |
412 | |
413 | |
414 def vector_to_states(X): | |
415 """ | |
416 Input: a vector MxN with N samples and M variables | |
417 Output: a codeword dictionary `parameters_alphabet', | |
418 state_seq, inverse `parameters_alphabet_inv' """ | |
419 | |
420 | |
421 parameters_alphabet = {} | |
422 n = 0 | |
423 | |
424 for i in range(0, X.shape[1]): | |
425 vec = tuple(ravel(X[:,i])) | |
426 if vec not in parameters_alphabet: | |
427 parameters_alphabet[vec] = n | |
428 n += 1 | |
429 | |
430 parameters_alphabet_inv = dict([(parameters_alphabet[m],m) for m in parameters_alphabet]) | |
431 | |
432 state_seq = array([parameters_alphabet[tuple(ravel(X[:,m]))] for m in range(0, parameters_vector_upsampled_code.shape[1])] ) | |
433 | |
434 return state_seq, parameters_alphabet, parameters_alphabet_inv | |
435 | |
436 | |
437 def states_to_vector(predicted, parameters_alphabet_inv): | |
438 estimated = matrix(zeros((len(parameters_alphabet_inv[0]), len(predicted)))) | |
439 for i in range(0, len(state_seq)): | |
440 estimated[:, i] = matrix(parameters_alphabet_inv[predicted[i]]).T | |
441 | |
442 return estimated | |
443 | |
444 state_seq, parameters_alphabet, parameters_alphabet_inv = vector_to_states(parameters_vector_upsampled_code) | |
445 | |
446 | |
447 parameters_change_variable = matrix(diff_and_pad(parameters_vector_upsampled)!=0).astype(int) | |
448 | |
449 changes_state_seq, changes_parameters_alphabet, changes_parameters_alphabet_inv = vector_to_states(parameters_change_variable) | |
450 | |
451 | |
452 # This is an hmm that just codes the changes" | |
453 # We have only two states, change and stay the same. | |
454 | |
455 | |
456 parameters_state, parameter_state_alphabet, parameter_state_alphabet_inv = vector_to_states(parameters_vector_upsampled) | |
457 | |
458 | |
459 print "[II] Testing Gaussian Naive Bayes Classifier" | |
460 gnb = GaussianNB() | |
461 gnb.fit(features_vector_upsampled.T, parameters_state) | |
462 | |
463 parameters_state_estimated = gnb.predict(features_vector_upsampled.T) | |
464 | |
465 output = states_to_vector(parameters_state_estimated, parameter_state_alphabet_inv) | |
466 | |
467 figure() | |
468 subplot(211) | |
469 plot(parameters_vector_upsampled.T) | |
470 title('Parameter value upsampled by a factor of %d' % UpsamplingFactor) | |
471 ylabel('value') | |
472 xlabel('frame #') | |
473 subplot(212) | |
474 #plot(smooth_matrix_1D(output).T) | |
475 plot(output.T) | |
476 ylabel('value') | |
477 xlabel('frame #') | |
478 cross_validate_classification(features_vector_upsampled.T, parameters_state, gnb) | |
479 | |
480 print "[II] Trying Multinomial HMM" | |
481 | |
482 # In order to do classification with HMMs, we need to: | |
483 # 1. Split the parameters into classes | |
484 # 2. Train one model per class | |
485 # 3. Feed our data to all the models | |
486 # 4. Check which has a better score and assig,n to M | |
487 | |
488 | |
489 class HmmClassifier: | |
490 def __init__(self, N=2, n_components = 1): | |
491 self.n_components = n_components | |
492 self.chain_size = N | |
493 self.hmms_ = [] | |
494 self.N = N | |
495 | |
496 def fit(self, X, states): | |
497 self.n_states = len(unique(states)) | |
498 | |
499 for n in range(0, self.n_states): | |
500 hmm_ = hmm.GaussianHMM(n_components = self.n_components, covariance_type = 'full') | |
501 | |
502 # Get training data for each class | |
503 vector = X[states == n,:] | |
504 | |
505 # Fit the HMM | |
506 # print vector | |
507 hmm_.fit([vector]) | |
508 | |
509 # And append to the list | |
510 self.hmms_.append(hmm_) | |
511 | |
512 def predict(self,X): | |
513 labels = zeros((X.shape[0],)) | |
514 N = self.N | |
515 | |
516 m = 0 | |
517 | |
518 scores = zeros((1, self.n_states)) | |
519 | |
520 | |
521 while m*N < X.shape[0]: | |
522 if (m+1)*N > X.shape[0]: | |
523 testdata = X[m*N:,:] | |
524 else: | |
525 testdata = X[m*N:(m+1)*N,:] | |
526 | |
527 # print testdata | |
528 | |
529 for i in range(0, self.n_states): | |
530 scores[0,i] = self.hmms_[i].score(testdata) | |
531 | |
532 if (m+1)*N > X.shape[0]: | |
533 labels[m*N:] = argmax(scores) | |
534 else: | |
535 labels[m*N:(m+1)*N] = argmax(scores) | |
536 | |
537 m+= 1 | |
538 | |
539 return labels | |
540 | |
541 N = 150 | |
542 n_components = 1 | |
543 | |
544 hmmc = HmmClassifier(N = N, n_components = n_components) | |
545 hmmc.fit(features_vector_upsampled.T, parameters_state) | |
546 | |
547 cross_validate_classification(features_vector_upsampled.T, parameters_state, hmmc) | |
548 | |
549 | |
550 | |
551 | |
552 # hmms_ = [] | |
553 # | |
554 # for n in range(0, len(parameter_state_alphabet)): | |
555 # #hmm_ = hmm.GMMHMM(n_components = 1, n_mix = 2) | |
556 # hmm_ = hmm.GaussianHMM(n_components = 1,covariance_type = 'full') | |
557 # | |
558 # # Get training data for each class | |
559 # vector = features_vector_upsampled[:,parameters_state == n] | |
560 # | |
561 # #if vector.shape[1] < n_clusters: | |
562 # # hmms_.append(None) | |
563 # #else: | |
564 # | |
565 # hmm_.fit([vector.T]) | |
566 # | |
567 # # Append to the list | |
568 # | |
569 # hmms_.append(hmm_) | |
570 # | |
571 # labels = zeros((features_vector_upsampled.shape[1],)) | |
572 # | |
573 # N = 20 | |
574 # m = 0 | |
575 # | |
576 # while m*N < features_vector_upsampled.shape[1]: | |
577 # | |
578 # scores = zeros((1, len(parameter_state_alphabet))) | |
579 # | |
580 # if (m+1)*N > features_vector_upsampled.shape[1]: | |
581 # testdata = features_vector_upsampled[:,m*N:] | |
582 # else: | |
583 # testdata = features_vector_upsampled[:,m*N:(m+1)*N] | |
584 # | |
585 # for i in range(0, len(parameter_state_alphabet)): | |
586 # if hmms_[i] is not None: | |
587 # scores[0,i] = hmms_[i].score(testdata.T) | |
588 # else: | |
589 # scores[0,i] = -100000 # Very large negative score | |
590 # if (m+1)*N >= features_vector_upsampled.shape[1]: | |
591 # labels[m*N:] = argmax(scores) | |
592 # else: | |
593 # labels[m*N:(m+1)*N] = argmax(scores) | |
594 # | |
595 # m += 1 | |
596 | |
597 | |
598 # figure() | |
599 #plot(labels.T) | |
600 | |
601 | |
602 labels = hmmc.predict(features_vector_upsampled.T) | |
603 estimated = states_to_vector(labels,parameter_state_alphabet_inv) | |
604 plot(estimated.T,'r--') | |
605 | |
606 title('Estimated parameter values') | |
607 legend(['Naive Bayes Classifier', 'HMM chain size %d (%.1fms)' % (N, float(N)/UpsamplingFactor*23.0)]) | |
608 | |
609 ylabel('value') | |
610 xlabel('frame #') |