Mercurial > hg > chime-home-dataset-annotation-and-baseline-evaluation-code
view gmm_baseline_experiments/run_experiments.py @ 5:b523456082ca tip
Update path to dataset and reflect modified chunk naming convention.
author | peterf |
---|---|
date | Mon, 01 Feb 2016 21:35:27 +0000 |
parents | cb535b80218a |
children |
line wrap: on
line source
#!/usr/bin/python # # run_experiments.py: # Main script for CHiME-Home dataset baseline GMM evaluation # # Author: Peter Foster # (c) 2015 Peter Foster # from pylab import * from sklearn import cross_validation import os from pandas import Series, DataFrame from collections import defaultdict from extract_features import FeatureExtractor import exper002 import custompickler from compute_performance_statistics import compute_performance_statistics import pdb Settings = {'paths':{}, 'algorithms':{}} Settings['paths'] = {'chime_home': {}, 'resultsdir':'/import/c4dm-scratch/peterf/audex/results/', 'featuresdir':'/import/c4dm-scratch/peterf/audex/features/'} Settings['paths']['chime_home'] = {'basepath':'/import/c4dm-02/people/peterf/audex/datasets/chime_home/release/'} #Read data sets and class assignments Datasets = {'chime_home':{}} #Read in annotations Chunks = list(Series.from_csv(Settings['paths']['chime_home']['basepath'] + 'chunks_refined.csv',header=None)) Annotations = [] for chunk in Chunks: Annotations.append(Series.from_csv(Settings['paths']['chime_home']['basepath'] + 'chunks/' + chunk + '.csv')) Datasets['chime_home']['dataset'] = DataFrame(Annotations) #Compute label statistics Datasets['chime_home']['labelstats'] = defaultdict(lambda: 0) for item in Datasets['chime_home']['dataset']['majorityvote']: for label in item: Datasets['chime_home']['labelstats'][label] += 1 #Labels to consider for multilabel classification Datasets['chime_home']['consideredlabels'] = ['c', 'b', 'f', 'm', 'o', 'p', 'v'] #Populate binary label assignments for label in Datasets['chime_home']['consideredlabels']: Datasets['chime_home']['dataset'][label] = [label in item for item in Datasets['chime_home']['dataset']['majorityvote']] #Obtain statistics for considered labels sum(Datasets['chime_home']['dataset'][Datasets['chime_home']['consideredlabels']]) / len(Datasets['chime_home']['dataset']) #Create partition for 10-fold cross-validation. Shuffling ensures each fold has approximately equal proportion of label occurrences np.random.seed(475686) Datasets['chime_home']['crossval_10fold'] = cross_validation.KFold(len(Datasets['chime_home']['dataset']), 10, shuffle=True) Datasets['chime_home']['dataset']['wavfile'] = Datasets['chime_home']['dataset']['chunkname'].apply(lambda s: Settings['paths']['chime_home']['basepath'] + 'chunks/' + s + '.48kHz.wav') #Extract features and assign them to Datasets structure for dataset in Datasets.keys(): picklepath = os.path.join(Settings['paths']['featuresdir'],'features_' + dataset) if not(os.path.isfile(picklepath)): if dataset == 'chime_home': featureExtractor = FeatureExtractor(samplingRate=48000, frameLength=1024, hopLength=512) else: raise NotImplementedError() FeatureList = featureExtractor.files_to_features(Datasets[dataset]['dataset']['wavfile']) custompickler.pickle_save(FeatureList,picklepath) else: FeatureList = custompickler.pickle_load(picklepath) #Integrity check for features in FeatureList: for feature in features.values(): assert(all(isfinite(feature.ravel()))) Datasets[dataset]['dataset']['features'] = FeatureList #GMM experiments using CHiME home dataset EXPER005 = {} EXPER005['name'] = 'GMM_Baseline_EXPER005' EXPER005['path'] = os.path.join(Settings['paths']['resultsdir'],'exploratory','saved_objects','EXPER005') EXPER005['settings'] = {'numcomponents': (1,2,4,8), 'features': ('librosa_mfccs',)} EXPER005['datasets'] = {} EXPER005['datasets']['chime_home'] = exper002.exper002_multilabelclassification(Datasets['chime_home']['dataset'], Datasets['chime_home']['consideredlabels'], Datasets['chime_home']['crossval_10fold'], Settings, numComponentValues=EXPER005['settings']['numcomponents'], featureTypeValues=EXPER005['settings']['features']) EXPER005 = compute_performance_statistics(EXPER005, Datasets, Settings, iterableParameters=['numcomponents', 'features']) custompickler.pickle_save(EXPER005, EXPER005['path']) #Collate results def accumulate_results(EXPER): EXPER['summaryresults'] = {} ds = EXPER['datasets'].keys()[0] for numComponents in EXPER['settings']['numcomponents']: EXPER['summaryresults'][numComponents] = {} for label in Datasets[ds]['consideredlabels']: EXPER['summaryresults'][numComponents][label] = EXPER['datasets'][ds][(numComponents, 'librosa_mfccs')]['performance']['classwise'][label]['auc_precisionrecall'] EXPER['summaryresults'] = DataFrame(EXPER['summaryresults']) accumulate_results(EXPER005) #Generate plot def plot_performance(EXPER): fig_width_pt = 246.0 # Get this from LaTeX using \showthe\columnwidth inches_per_pt = 1.0/72.27 # Convert pt to inch golden_mean = (sqrt(5)-1.0)/2.0 # Aesthetic ratio fig_width = fig_width_pt*inches_per_pt # width in inches fig_height = fig_width*golden_mean # height in inches fig_size = [fig_width,fig_height] params = {'backend': 'ps', 'axes.labelsize': 8, 'text.fontsize': 8, 'legend.fontsize': 7.0, 'xtick.labelsize': 8, 'ytick.labelsize': 8, 'text.usetex': False, 'figure.figsize': fig_size} rcParams.update(params) ind = np.arange(len(EXPER['summaryresults'][1])) # the x locations for the groups width = 0.22 # the width of the bars fig, ax = plt.subplots() rects = [] colours = ('r', 'y', 'g', 'b', 'c') for numComponents, i in zip(EXPER['summaryresults'],range(len(EXPER['summaryresults']))): rects.append(ax.bar(ind+width*i, EXPER['summaryresults'][numComponents][['c','m','f','v','p','b','o']], width, color=colours[i], align='center')) # add text for labels, title and axes ticks ax.set_ylabel('AUC') ax.set_xlabel('Label') ax.set_xticks(ind+width) ax.set_xticklabels(('c','m','f','v','p','b','o')) ax.legend( (rect[0] for rect in rects), ('k=1', 'k=2', 'k=4','k=8') ,loc='lower right') #Tweak x-axis limit ax.set_xlim(left=-0.5) ax.set_ylim(top=1.19) plt.gcf().subplots_adjust(left=0.15) #Prevent y-axis label from being chopped off def autolabel(r): for rects in r: for rect in rects: height = rect.get_height() ax.text(rect.get_x()+0.14,0.04+height,'%1.2f'%float(height),ha='center',va='bottom',rotation='vertical',size=6.0) autolabel(rects) plt.draw() plt.savefig('figures/predictionperformance' + EXPER['name'] +'.pdf') plot_performance(EXPER005)