comparison annotation_scripts/warmup_phase/evaluate_annotaions_random_excerpts.py @ 0:75c79305d794

Scripts for obtaining and analysing annotations
author peterf
date Tue, 07 Jul 2015 14:42:09 +0100
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:75c79305d794
1 #!/usr/bin/python
2
3 #
4 # evaluate_annotaions_random_excerpts.py::
5 # Play random excerpts from a list of audio files
6 #
7 # Author: Peter Foster
8 # (c) 2014 Peter Foster
9 #
10 from pandas import Series, DataFrame
11 import pandas.io.parsers
12 import re
13 import numpy as np
14 from collections import defaultdict
15
16 AnnotationsFile = '/import/c4dm-02/people/peterf/audex/datasets/chime_home/raw_data/exploratory/exploratory_labelling.csv'
17 #OutputDir = '/import/c4dm-scratch/peterf/audex/results/exploratory/'
18 OutputDir = '/import/c4dm-02/people/peterf/audex/datasets/chime_home/raw_data/exploratory/'
19 Annotations = pandas.io.parsers.read_csv(AnnotationsFile, header=None)
20 Annotations.columns = ['audiofile', 'chunk', 'annotation']
21 #Check integrity -- only specific characters allowed
22 permittedCharacters = 'cmfvns'
23 assert(all(Annotations['annotation'].apply(lambda s: re.search('[^'+permittedCharacters+']', s) == None) == True))
24
25 #Get unique, sorted strings
26 Annotations['annotation'] = Annotations['annotation'].apply(lambda s: ''.join(set(s)))
27
28 #Set random seed for bootstrap sampling
29 np.random.seed(4756)
30
31 def bootstrap_statistic(Vector, Statistic, nSamples):
32 #Compute statistic across bootstrap samples
33 S = [Statistic(Vector, np.random.choice(len(Vector), len(Vector), replace=True)) for i in range(nSamples)]
34 return S
35
36 #Get sampling distribution of annotation strings, in addition to bootstrapped standard errors
37 Stats = {}
38 Stats['annotation_strings'] = {'proportion':{}, 'standarderror':{}}
39 Stats['annotation_strings_bootstrap'] = {}
40 for s in Annotations['annotation'].unique():
41 Statistic = lambda V,I: sum(V[I] == s) / float(len(I))
42 #Get sample statistic
43 #print('Bootstrapping sample statistic for annotation string ' + s)
44 Stats['annotation_strings']['proportion'][s] = Statistic(Annotations['annotation'], range(len(Annotations)))
45 Stats['annotation_strings']['standarderror'][s] = np.std(bootstrap_statistic(Annotations['annotation'], Statistic, 10000), ddof=1)
46 Stats['annotation_strings'] = DataFrame(Stats['annotation_strings'])
47 Stats['annotation_strings'].sort(['proportion', 'standarderror'], ascending=[False,False], inplace=True)
48
49 #Get sampling distribution of annotation characters, in addition to bootstrapped standard errors
50 Stats['annotation_characters'] = {'proportion':{}, 'standarderror':{}}
51 for c in permittedCharacters:
52 Statistic = lambda V,I: sum(V[I].apply(lambda s: c in s)) / float(len(I))
53 #print('Bootstrapping sample statistic for annotation character ' + c)
54 Stats['annotation_characters']['proportion'][c] = Statistic(Annotations['annotation'], range(len(Annotations)))
55 Stats['annotation_characters']['standarderror'][c] = np.std(bootstrap_statistic(Annotations['annotation'], Statistic, 10000), ddof=1)
56 Stats['annotation_characters'] = DataFrame(Stats['annotation_characters'])
57 Stats['annotation_characters'].sort(['proportion', 'standarderror'], ascending=[False,False], inplace=True)
58
59 print('Sampling distribution of annotation strings')
60 print(Stats['annotation_strings'])
61 print('Sampling distribution of annotation characters')
62 print(Stats['annotation_characters'])
63
64 Stats['annotation_strings'].index.name = 'annotation_string'
65 Stats['annotation_characters'].index.name = 'annotation_character'
66 Stats['annotation_strings'].to_csv(OutputDir + 'exploratory_labelling_annotation_strings_hist.csv')
67 Stats['annotation_characters'].to_csv(OutputDir + 'exploratory_labelling_annotation_characters_hist.csv')
68
69 #Write balanced sample of chunks to file, based on annotation strings
70 #Duration of each chunk in seconds
71 chunkDuration = 4
72 sampleRate = 48000
73 nRandomSamples = 5
74 AnnotationSample = DataFrame(columns=['audiofile','chunk','framestart'])
75 for s in Annotations['annotation'].unique():
76 R = Annotations[Annotations['annotation'] == s]
77 I = np.random.choice(len(R), nRandomSamples)
78 R = R.iloc[I]
79 R['framestart'] = R['chunk'] * sampleRate * chunkDuration
80 R['chunk'] = R['chunk'].apply(str)
81 R['framestart'] = R['framestart'].apply(str)
82 #R.drop('annotation')
83 AnnotationSample = AnnotationSample.append(R, ignore_index=True)
84 AnnotationSample.to_csv(OutputDir + 'exploratory_labelling_annotation_chunksample.csv')