annotate gmm_baseline_experiments/run_experiments.py @ 5:b523456082ca tip

Update path to dataset and reflect modified chunk naming convention.
author peterf
date Mon, 01 Feb 2016 21:35:27 +0000
parents cb535b80218a
children
rev   line source
peterf@2 1 #!/usr/bin/python
peterf@2 2
peterf@2 3 #
peterf@2 4 # run_experiments.py:
peterf@2 5 # Main script for CHiME-Home dataset baseline GMM evaluation
peterf@2 6 #
peterf@2 7 # Author: Peter Foster
peterf@2 8 # (c) 2015 Peter Foster
peterf@2 9 #
peterf@2 10
peterf@2 11 from pylab import *
peterf@2 12 from sklearn import cross_validation
peterf@2 13 import os
peterf@2 14 from pandas import Series, DataFrame
peterf@2 15 from collections import defaultdict
peterf@2 16 from extract_features import FeatureExtractor
peterf@2 17 import exper002
peterf@2 18 import custompickler
peterf@2 19 from compute_performance_statistics import compute_performance_statistics
peterf@2 20 import pdb
peterf@2 21
peterf@2 22 Settings = {'paths':{}, 'algorithms':{}}
peterf@2 23 Settings['paths'] = {'chime_home': {}, 'resultsdir':'/import/c4dm-scratch/peterf/audex/results/', 'featuresdir':'/import/c4dm-scratch/peterf/audex/features/'}
peterf@5 24 Settings['paths']['chime_home'] = {'basepath':'/import/c4dm-02/people/peterf/audex/datasets/chime_home/release/'}
peterf@2 25
peterf@2 26 #Read data sets and class assignments
peterf@2 27 Datasets = {'chime_home':{}}
peterf@2 28
peterf@2 29 #Read in annotations
peterf@5 30 Chunks = list(Series.from_csv(Settings['paths']['chime_home']['basepath'] + 'chunks_refined.csv',header=None))
peterf@2 31 Annotations = []
peterf@2 32 for chunk in Chunks:
peterf@2 33 Annotations.append(Series.from_csv(Settings['paths']['chime_home']['basepath'] + 'chunks/' + chunk + '.csv'))
peterf@2 34 Datasets['chime_home']['dataset'] = DataFrame(Annotations)
peterf@2 35
peterf@2 36 #Compute label statistics
peterf@2 37 Datasets['chime_home']['labelstats'] = defaultdict(lambda: 0)
peterf@2 38 for item in Datasets['chime_home']['dataset']['majorityvote']:
peterf@2 39 for label in item:
peterf@2 40 Datasets['chime_home']['labelstats'][label] += 1
peterf@5 41 #Labels to consider for multilabel classification
peterf@2 42 Datasets['chime_home']['consideredlabels'] = ['c', 'b', 'f', 'm', 'o', 'p', 'v']
peterf@2 43 #Populate binary label assignments
peterf@2 44 for label in Datasets['chime_home']['consideredlabels']:
peterf@2 45 Datasets['chime_home']['dataset'][label] = [label in item for item in Datasets['chime_home']['dataset']['majorityvote']]
peterf@2 46 #Obtain statistics for considered labels
peterf@2 47 sum(Datasets['chime_home']['dataset'][Datasets['chime_home']['consideredlabels']]) / len(Datasets['chime_home']['dataset'])
peterf@5 48 #Create partition for 10-fold cross-validation. Shuffling ensures each fold has approximately equal proportion of label occurrences
peterf@2 49 np.random.seed(475686)
peterf@2 50 Datasets['chime_home']['crossval_10fold'] = cross_validation.KFold(len(Datasets['chime_home']['dataset']), 10, shuffle=True)
peterf@2 51
peterf@5 52 Datasets['chime_home']['dataset']['wavfile'] = Datasets['chime_home']['dataset']['chunkname'].apply(lambda s: Settings['paths']['chime_home']['basepath'] + 'chunks/' + s + '.48kHz.wav')
peterf@2 53
peterf@2 54 #Extract features and assign them to Datasets structure
peterf@2 55 for dataset in Datasets.keys():
peterf@2 56 picklepath = os.path.join(Settings['paths']['featuresdir'],'features_' + dataset)
peterf@2 57 if not(os.path.isfile(picklepath)):
peterf@2 58 if dataset == 'chime_home':
peterf@2 59 featureExtractor = FeatureExtractor(samplingRate=48000, frameLength=1024, hopLength=512)
peterf@2 60 else:
peterf@2 61 raise NotImplementedError()
peterf@2 62 FeatureList = featureExtractor.files_to_features(Datasets[dataset]['dataset']['wavfile'])
peterf@2 63 custompickler.pickle_save(FeatureList,picklepath)
peterf@2 64 else:
peterf@2 65 FeatureList = custompickler.pickle_load(picklepath)
peterf@2 66 #Integrity check
peterf@2 67 for features in FeatureList:
peterf@2 68 for feature in features.values():
peterf@2 69 assert(all(isfinite(feature.ravel())))
peterf@2 70 Datasets[dataset]['dataset']['features'] = FeatureList
peterf@2 71
peterf@2 72 #GMM experiments using CHiME home dataset
peterf@2 73 EXPER005 = {}
peterf@2 74 EXPER005['name'] = 'GMM_Baseline_EXPER005'
peterf@2 75 EXPER005['path'] = os.path.join(Settings['paths']['resultsdir'],'exploratory','saved_objects','EXPER005')
peterf@2 76 EXPER005['settings'] = {'numcomponents': (1,2,4,8), 'features': ('librosa_mfccs',)}
peterf@2 77 EXPER005['datasets'] = {}
peterf@2 78 EXPER005['datasets']['chime_home'] = exper002.exper002_multilabelclassification(Datasets['chime_home']['dataset'], Datasets['chime_home']['consideredlabels'], Datasets['chime_home']['crossval_10fold'], Settings, numComponentValues=EXPER005['settings']['numcomponents'], featureTypeValues=EXPER005['settings']['features'])
peterf@2 79 EXPER005 = compute_performance_statistics(EXPER005, Datasets, Settings, iterableParameters=['numcomponents', 'features'])
peterf@2 80 custompickler.pickle_save(EXPER005, EXPER005['path'])
peterf@2 81
peterf@2 82 #Collate results
peterf@2 83 def accumulate_results(EXPER):
peterf@2 84 EXPER['summaryresults'] = {}
peterf@2 85 ds = EXPER['datasets'].keys()[0]
peterf@2 86 for numComponents in EXPER['settings']['numcomponents']:
peterf@2 87 EXPER['summaryresults'][numComponents] = {}
peterf@2 88 for label in Datasets[ds]['consideredlabels']:
peterf@2 89 EXPER['summaryresults'][numComponents][label] = EXPER['datasets'][ds][(numComponents, 'librosa_mfccs')]['performance']['classwise'][label]['auc_precisionrecall']
peterf@2 90 EXPER['summaryresults'] = DataFrame(EXPER['summaryresults'])
peterf@2 91 accumulate_results(EXPER005)
peterf@2 92
peterf@2 93 #Generate plot
peterf@2 94 def plot_performance(EXPER):
peterf@2 95 fig_width_pt = 246.0 # Get this from LaTeX using \showthe\columnwidth
peterf@2 96 inches_per_pt = 1.0/72.27 # Convert pt to inch
peterf@2 97 golden_mean = (sqrt(5)-1.0)/2.0 # Aesthetic ratio
peterf@2 98 fig_width = fig_width_pt*inches_per_pt # width in inches
peterf@2 99 fig_height = fig_width*golden_mean # height in inches
peterf@2 100 fig_size = [fig_width,fig_height]
peterf@2 101 params = {'backend': 'ps',
peterf@2 102 'axes.labelsize': 8,
peterf@2 103 'text.fontsize': 8,
peterf@2 104 'legend.fontsize': 7.0,
peterf@2 105 'xtick.labelsize': 8,
peterf@2 106 'ytick.labelsize': 8,
peterf@2 107 'text.usetex': False,
peterf@2 108 'figure.figsize': fig_size}
peterf@2 109 rcParams.update(params)
peterf@2 110 ind = np.arange(len(EXPER['summaryresults'][1])) # the x locations for the groups
peterf@2 111 width = 0.22 # the width of the bars
peterf@2 112 fig, ax = plt.subplots()
peterf@2 113 rects = []
peterf@2 114 colours = ('r', 'y', 'g', 'b', 'c')
peterf@2 115 for numComponents, i in zip(EXPER['summaryresults'],range(len(EXPER['summaryresults']))):
peterf@2 116 rects.append(ax.bar(ind+width*i, EXPER['summaryresults'][numComponents][['c','m','f','v','p','b','o']], width, color=colours[i], align='center'))
peterf@2 117 # add text for labels, title and axes ticks
peterf@2 118 ax.set_ylabel('AUC')
peterf@2 119 ax.set_xlabel('Label')
peterf@2 120 ax.set_xticks(ind+width)
peterf@2 121 ax.set_xticklabels(('c','m','f','v','p','b','o'))
peterf@2 122 ax.legend( (rect[0] for rect in rects), ('k=1', 'k=2', 'k=4','k=8') ,loc='lower right')
peterf@2 123 #Tweak x-axis limit
peterf@2 124 ax.set_xlim(left=-0.5)
peterf@2 125 ax.set_ylim(top=1.19)
peterf@2 126 plt.gcf().subplots_adjust(left=0.15) #Prevent y-axis label from being chopped off
peterf@2 127 def autolabel(r):
peterf@2 128 for rects in r:
peterf@2 129 for rect in rects:
peterf@2 130 height = rect.get_height()
peterf@2 131 ax.text(rect.get_x()+0.14,0.04+height,'%1.2f'%float(height),ha='center',va='bottom',rotation='vertical',size=6.0)
peterf@2 132 autolabel(rects)
peterf@2 133 plt.draw()
peterf@2 134 plt.savefig('figures/predictionperformance' + EXPER['name'] +'.pdf')
peterf@5 135 plot_performance(EXPER005)