Mercurial > hg > cepstral-pitchtracker
view CepstralPitchTracker.cpp @ 47:f72a470fe4b5
Pull out mean filter, test it
author | Chris Cannam |
---|---|
date | Tue, 11 Sep 2012 16:37:47 +0100 |
parents | 822cf7b8e070 |
children | d84049e20c61 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* This file is Copyright (c) 2012 Chris Cannam Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "CepstralPitchTracker.h" #include "MeanFilter.h" #include "vamp-sdk/FFT.h" #include <vector> #include <algorithm> #include <cstdio> #include <cmath> #include <complex> using std::string; using std::vector; using Vamp::RealTime; CepstralPitchTracker::CepstralPitchTracker(float inputSampleRate) : Plugin(inputSampleRate), m_channels(0), m_stepSize(256), m_blockSize(1024), m_fmin(50), m_fmax(900), m_vflen(1), m_binFrom(0), m_binTo(0), m_bins(0) { } CepstralPitchTracker::~CepstralPitchTracker() { } string CepstralPitchTracker::getIdentifier() const { return "cepstral-pitchtracker"; } string CepstralPitchTracker::getName() const { return "Cepstral Pitch Tracker"; } string CepstralPitchTracker::getDescription() const { return "Estimate f0 of monophonic material using a cepstrum method."; } string CepstralPitchTracker::getMaker() const { return "Chris Cannam"; } int CepstralPitchTracker::getPluginVersion() const { // Increment this each time you release a version that behaves // differently from the previous one return 1; } string CepstralPitchTracker::getCopyright() const { return "Freely redistributable (BSD license)"; } CepstralPitchTracker::InputDomain CepstralPitchTracker::getInputDomain() const { return FrequencyDomain; } size_t CepstralPitchTracker::getPreferredBlockSize() const { return 1024; } size_t CepstralPitchTracker::getPreferredStepSize() const { return 256; } size_t CepstralPitchTracker::getMinChannelCount() const { return 1; } size_t CepstralPitchTracker::getMaxChannelCount() const { return 1; } CepstralPitchTracker::ParameterList CepstralPitchTracker::getParameterDescriptors() const { ParameterList list; return list; } float CepstralPitchTracker::getParameter(string identifier) const { return 0.f; } void CepstralPitchTracker::setParameter(string identifier, float value) { } CepstralPitchTracker::ProgramList CepstralPitchTracker::getPrograms() const { ProgramList list; return list; } string CepstralPitchTracker::getCurrentProgram() const { return ""; // no programs } void CepstralPitchTracker::selectProgram(string name) { } CepstralPitchTracker::OutputList CepstralPitchTracker::getOutputDescriptors() const { OutputList outputs; OutputDescriptor d; d.identifier = "f0"; d.name = "Estimated f0"; d.description = "Estimated fundamental frequency"; d.unit = "Hz"; d.hasFixedBinCount = true; d.binCount = 1; d.hasKnownExtents = true; d.minValue = m_fmin; d.maxValue = m_fmax; d.isQuantized = false; d.sampleType = OutputDescriptor::FixedSampleRate; d.sampleRate = (m_inputSampleRate / m_stepSize); d.hasDuration = false; outputs.push_back(d); d.identifier = "notes"; d.name = "Notes"; d.description = "Derived fixed-pitch note frequencies"; d.unit = "Hz"; d.hasFixedBinCount = true; d.binCount = 1; d.hasKnownExtents = true; d.minValue = m_fmin; d.maxValue = m_fmax; d.isQuantized = false; d.sampleType = OutputDescriptor::FixedSampleRate; d.sampleRate = (m_inputSampleRate / m_stepSize); d.hasDuration = true; outputs.push_back(d); return outputs; } bool CepstralPitchTracker::initialise(size_t channels, size_t stepSize, size_t blockSize) { if (channels < getMinChannelCount() || channels > getMaxChannelCount()) return false; // std::cerr << "CepstralPitchTracker::initialise: channels = " << channels // << ", stepSize = " << stepSize << ", blockSize = " << blockSize // << std::endl; m_channels = channels; m_stepSize = stepSize; m_blockSize = blockSize; m_binFrom = int(m_inputSampleRate / m_fmax); m_binTo = int(m_inputSampleRate / m_fmin); if (m_binTo >= (int)m_blockSize / 2) { m_binTo = m_blockSize / 2 - 1; } m_bins = (m_binTo - m_binFrom) + 1; reset(); return true; } void CepstralPitchTracker::reset() { } void CepstralPitchTracker::addFeaturesFrom(NoteHypothesis h, FeatureSet &fs) { NoteHypothesis::Estimates es = h.getAcceptedEstimates(); for (int i = 0; i < (int)es.size(); ++i) { Feature f; f.hasTimestamp = true; f.timestamp = es[i].time; f.values.push_back(es[i].freq); fs[0].push_back(f); } Feature nf; nf.hasTimestamp = true; nf.hasDuration = true; NoteHypothesis::Note n = h.getAveragedNote(); nf.timestamp = n.time; nf.duration = n.duration; nf.values.push_back(n.freq); fs[1].push_back(nf); } double CepstralPitchTracker::cubicInterpolate(const double y[4], double x) { double a0 = y[3] - y[2] - y[0] + y[1]; double a1 = y[0] - y[1] - a0; double a2 = y[2] - y[0]; double a3 = y[1]; return a0 * x * x * x + a1 * x * x + a2 * x + a3; } double CepstralPitchTracker::findInterpolatedPeak(const double *in, int maxbin) { if (maxbin < 2 || maxbin > m_bins - 3) { return maxbin; } double maxval = 0.0; double maxidx = maxbin; const int divisions = 10; double y[4]; y[0] = in[maxbin-1]; y[1] = in[maxbin]; y[2] = in[maxbin+1]; y[3] = in[maxbin+2]; for (int i = 0; i < divisions; ++i) { double probe = double(i) / double(divisions); double value = cubicInterpolate(y, probe); if (value > maxval) { maxval = value; maxidx = maxbin + probe; } } y[3] = y[2]; y[2] = y[1]; y[1] = y[0]; y[0] = in[maxbin-2]; for (int i = 0; i < divisions; ++i) { double probe = double(i) / double(divisions); double value = cubicInterpolate(y, probe); if (value > maxval) { maxval = value; maxidx = maxbin - 1 + probe; } } /* std::cerr << "centre = " << maxbin << ": [" << in[maxbin-2] << "," << in[maxbin-1] << "," << in[maxbin] << "," << in[maxbin+1] << "," << in[maxbin+2] << "] -> " << maxidx << std::endl; */ return maxidx; } CepstralPitchTracker::FeatureSet CepstralPitchTracker::process(const float *const *inputBuffers, RealTime timestamp) { FeatureSet fs; int bs = m_blockSize; int hs = m_blockSize/2 + 1; double *rawcep = new double[bs]; double *io = new double[bs]; double *logmag = new double[bs]; // The "inverse symmetric" method. Seems to be the most reliable double magmean = 0.0; for (int i = 0; i < hs; ++i) { double power = inputBuffers[0][i*2 ] * inputBuffers[0][i*2 ] + inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1]; double mag = sqrt(power); magmean += mag; double lm = log(mag + 0.00000001); logmag[i] = lm; if (i > 0) logmag[bs - i] = lm; } magmean /= hs; double threshold = 0.1; // for magmean Vamp::FFT::inverse(bs, logmag, 0, rawcep, io); delete[] logmag; delete[] io; int n = m_bins; double *data = new double[n]; MeanFilter(m_vflen).filterSubsequence(rawcep, data, m_blockSize, n, m_binFrom); delete[] rawcep; double maxval = 0.0; int maxbin = -1; for (int i = 0; i < n; ++i) { if (data[i] > maxval) { maxval = data[i]; maxbin = i; } } if (maxbin < 0) { delete[] data; return fs; } double nextPeakVal = 0.0; for (int i = 1; i+1 < n; ++i) { if (data[i] > data[i-1] && data[i] > data[i+1] && i != maxbin && data[i] > nextPeakVal) { nextPeakVal = data[i]; } } double cimax = findInterpolatedPeak(data, maxbin); double peakfreq = m_inputSampleRate / (cimax + m_binFrom); double confidence = 0.0; if (nextPeakVal != 0.0) { confidence = (maxval - nextPeakVal) * 10.0; if (magmean < threshold) confidence = 0.0; // std::cerr << "magmean = " << magmean << ", confidence = " << confidence << std::endl; } NoteHypothesis::Estimate e; e.freq = peakfreq; e.time = timestamp; e.confidence = confidence; if (!m_good.accept(e)) { int candidate = -1; bool accepted = false; for (int i = 0; i < (int)m_possible.size(); ++i) { if (m_possible[i].accept(e)) { if (m_possible[i].getState() == NoteHypothesis::Satisfied) { accepted = true; candidate = i; } break; } } if (!accepted) { NoteHypothesis h; h.accept(e); //!!! must succeed as h is new, so perhaps there should be a ctor for this m_possible.push_back(h); } if (m_good.getState() == NoteHypothesis::Expired) { addFeaturesFrom(m_good, fs); } if (m_good.getState() == NoteHypothesis::Expired || m_good.getState() == NoteHypothesis::Rejected) { if (candidate >= 0) { m_good = m_possible[candidate]; } else { m_good = NoteHypothesis(); } } // reap rejected/expired hypotheses from possible list Hypotheses toReap = m_possible; m_possible.clear(); for (int i = 0; i < (int)toReap.size(); ++i) { NoteHypothesis h = toReap[i]; if (h.getState() != NoteHypothesis::Rejected && h.getState() != NoteHypothesis::Expired) { m_possible.push_back(h); } } } delete[] data; return fs; } CepstralPitchTracker::FeatureSet CepstralPitchTracker::getRemainingFeatures() { FeatureSet fs; if (m_good.getState() == NoteHypothesis::Satisfied) { addFeaturesFrom(m_good, fs); } return fs; }