Daniel@0: .TH GC 1 "27 March 2008" Daniel@0: .SH NAME Daniel@0: gvgen \- generate graphs Daniel@0: .SH SYNOPSIS Daniel@0: .B gvgen Daniel@0: [ Daniel@0: .B \-d? Daniel@0: ] Daniel@0: [ Daniel@0: .BI -c n Daniel@0: ] Daniel@0: [ Daniel@0: .BI -C x,y Daniel@0: ] Daniel@0: [ Daniel@0: .BI -g [\fBf\fP]x,y Daniel@0: ] Daniel@0: [ Daniel@0: .BI -G [\fBf\fP]x,y Daniel@0: ] Daniel@0: [ Daniel@0: .BI -h n Daniel@0: ] Daniel@0: [ Daniel@0: .BI -k n Daniel@0: ] Daniel@0: [ Daniel@0: .BI -b x,y Daniel@0: ] Daniel@0: [ Daniel@0: .BI -p n Daniel@0: ] Daniel@0: [ Daniel@0: .BI -s n Daniel@0: ] Daniel@0: [ Daniel@0: .BI -S n Daniel@0: ] Daniel@0: [ Daniel@0: .BI -t n Daniel@0: ] Daniel@0: [ Daniel@0: .BI -T x,y Daniel@0: ] Daniel@0: [ Daniel@0: .BI -w n Daniel@0: ] Daniel@0: [ Daniel@0: .BI -o outfile Daniel@0: ] Daniel@0: .SH DESCRIPTION Daniel@0: .B gvgen Daniel@0: generates a variety of simple, regularly-structured abstract Daniel@0: graphs. Daniel@0: .SH OPTIONS Daniel@0: The following options are supported: Daniel@0: .TP Daniel@0: .BI \-c " n" Daniel@0: Generate a cycle with \fIn\fP vertices and edges. Daniel@0: .TP Daniel@0: .BI \-C " x,y" Daniel@0: Generate an \fIx\fP by \fIy\fP cylinder. Daniel@0: This will have \fIx*y\fP vertices and Daniel@0: \fI2*x*y - y\fP edges. Daniel@0: .TP Daniel@0: .BI \-g " [\fBf\fP]x,y" Daniel@0: Generate an \fIx\fP by \fIy\fP grid. Daniel@0: If \fBf\fP is given, the grid is folded, with an edge Daniel@0: attaching each pair of opposing corner vertices. Daniel@0: This will have \fIx*y\fP vertices and Daniel@0: \fI2*x*y - y - x\fP edges if unfolded and Daniel@0: \fI2*x*y - y - x + 2\fP edges if folded. Daniel@0: .TP Daniel@0: .BI \-G " [\fBf\fP]x,y" Daniel@0: Generate an \fIx\fP by \fIy\fP partial grid. Daniel@0: If \fBf\fP is given, the grid is folded, with an edge Daniel@0: attaching each pair of opposing corner vertices. Daniel@0: This will have \fIx*y\fP vertices. Daniel@0: .TP Daniel@0: .BI \-h " n" Daniel@0: Generate a hypercube of degree \fIn\fP. Daniel@0: This will have \fI2^n\fP vertices and \fIn*2^(n-1)\fP edges. Daniel@0: .TP Daniel@0: .BI \-k " n" Daniel@0: Generate a complete graph on \fIn\fP vertices with Daniel@0: \fIn*(n-1)/2\fP edges. Daniel@0: .TP Daniel@0: .BI \-b " x,y" Daniel@0: Generate a complete \fIx\fP by \fIy\fP bipartite graph. Daniel@0: This will have \fIx+y\fP vertices and Daniel@0: \fIx*y\fP edges. Daniel@0: .TP Daniel@0: .BI \-p " n" Daniel@0: Generate a path on \fIn\fP vertices. Daniel@0: This will have \fIn-1\fP edges. Daniel@0: .TP Daniel@0: .BI \-s " n" Daniel@0: Generate a star on \fIn\fP vertices. Daniel@0: This will have \fIn-1\fP edges. Daniel@0: .TP Daniel@0: .BI \-S " n" Daniel@0: Generate a Sierpinski graph of order \fIn\fP. Daniel@0: This will have \fI3*(3^(n-1) - 1)/2\fP vertices and Daniel@0: \fI3^n\fP edges. Daniel@0: .TP Daniel@0: .BI \-t " n" Daniel@0: Generate a binary tree of height \fIn\fP. Daniel@0: This will have \fI2^n-1\fP vertices and Daniel@0: \fI2^n-2\fP edges. Daniel@0: .TP Daniel@0: .BI \-T " x,y" Daniel@0: Generate an \fIx\fP by \fIy\fP torus. Daniel@0: This will have \fIx*y\fP vertices and Daniel@0: \fI2*x*y\fP edges. Daniel@0: .TP Daniel@0: .BI \-w " n" Daniel@0: Generate a path on \fIn\fP vertices. Daniel@0: This will have \fIn-1\fP edges. Daniel@0: .TP Daniel@0: .BI \-o " outfile" Daniel@0: If specified, the generated graph is written into the file Daniel@0: .I outfile. Daniel@0: Otherwise, the graph is written to standard out. Daniel@0: .TP Daniel@0: .B \-d Daniel@0: Make the generated graph directed. Daniel@0: .TP Daniel@0: .B \-? Daniel@0: Print usage information. Daniel@0: .SH "EXIT STATUS" Daniel@0: .B gvgen Daniel@0: exits with 0 on successful completion, Daniel@0: and exits with 1 if given an ill-formed or incorrect flag, Daniel@0: or if the specified output file could not be opened. Daniel@0: .SH AUTHOR Daniel@0: Emden R. Gansner Daniel@0: .SH "SEE ALSO" Daniel@0: gc(1), acyclic(1), gvpr(1), gvcolor(1), ccomps(1), sccmap(1), tred(1), libgraph(3)