Daniel@0: function [Y, Loss] = separationOracleMRR(q, D, pos, neg, k) Daniel@0: % Daniel@0: % [Y,Loss] = separationOracleMRR(q, D, pos, neg, k) Daniel@0: % Daniel@0: % q = index of the query point Daniel@0: % D = the current distance matrix Daniel@0: % pos = indices of relevant results for q Daniel@0: % neg = indices of irrelevant results for q Daniel@0: % k = length of the list to consider (unused in MRR) Daniel@0: % Daniel@0: % Y is a permutation 1:n corresponding to the maximally Daniel@0: % violated constraint Daniel@0: % Daniel@0: % Loss is the loss for Y, in this case, 1-MRR(Y) Daniel@0: Daniel@0: Daniel@0: % First, sort the documents in descending order of W'Phi(q,x) Daniel@0: % Phi = - (X(q) - X(x)) * (X(q) - X(x))' Daniel@0: Daniel@0: % Sort the positive documents Daniel@0: ScorePos = - D(pos,q); Daniel@0: [Vpos, Ipos] = sort(full(ScorePos'), 'descend'); Daniel@0: Ipos = pos(Ipos); Daniel@0: Daniel@0: % Sort the negative documents Daniel@0: ScoreNeg = -D(neg,q); Daniel@0: [Vneg, Ineg] = sort(full(ScoreNeg'), 'descend'); Daniel@0: Ineg = neg(Ineg); Daniel@0: Daniel@0: % Now, solve the DP for the interleaving Daniel@0: Daniel@0: numPos = length(pos); Daniel@0: numNeg = length(neg); Daniel@0: n = numPos + numNeg; Daniel@0: Daniel@0: cVpos = cumsum(Vpos); Daniel@0: cVneg = cumsum(Vneg); Daniel@0: Daniel@0: Daniel@0: % Algorithm: Daniel@0: % For each RR score in 1/1, 1/2, ..., 1/(numNeg+1) Daniel@0: % Calculate maximum discriminant score for that precision level Daniel@0: MRR = ((1:(numNeg+1)).^-1)'; Daniel@0: Daniel@0: Daniel@0: Discriminant = zeros(numNeg+1, 1); Daniel@0: Discriminant(end) = numPos * cVneg(end) - numNeg * cVpos(end); Daniel@0: Daniel@0: % For the rest of the positions, we're interleaving one more negative Daniel@0: % example into the 2nd-through-last positives Daniel@0: offsets = 1 + binarysearch(Vneg, Vpos(2:end)); Daniel@0: Daniel@0: % How many of the remaining positives go before Vneg(a)? Daniel@0: NegsBefore = -bsxfun(@ge, offsets, (1:length(Vpos))'); Daniel@0: Daniel@0: % For the last position, all negatives come before all positives Daniel@0: NegsBefore(:,numNeg+1) = numNeg; Daniel@0: Daniel@0: Discriminant(1:numNeg) = -2 * (offsets .* Vneg - cVpos(offsets)); Daniel@0: Discriminant = sum(Discriminant) - cumsum(Discriminant) + Discriminant; Daniel@0: Daniel@0: Daniel@0: % Normalize discriminant scores Daniel@0: Discriminant = Discriminant / (numPos * numNeg); Daniel@0: [s, x] = max(Discriminant - MRR); Daniel@0: Daniel@0: % Now we know that there are x-1 relevant docs in the max ranking Daniel@0: % Construct Y from NegsBefore(x,:) Daniel@0: Daniel@0: Y = nan * ones(n,1); Daniel@0: Y((1:numPos)' + sum(NegsBefore(:,x:end),2)) = Ipos; Daniel@0: Y(isnan(Y)) = Ineg; Daniel@0: Daniel@0: % Compute loss for this list Daniel@0: Loss = 1 - MRR(x); Daniel@0: end Daniel@0: