Daniel@0: function [codes,clusters,err] = som_kmeans(method, D, k, epochs, verbose) Daniel@0: Daniel@0: % SOM_KMEANS K-means algorithm. Daniel@0: % Daniel@0: % [codes,clusters,err] = som_kmeans(method, D, k, [epochs], [verbose]) Daniel@0: % Daniel@0: % Input and output arguments ([]'s are optional): Daniel@0: % method (string) k-means algorithm type: 'batch' or 'seq' Daniel@0: % D (matrix) data matrix Daniel@0: % (struct) data or map struct Daniel@0: % k (scalar) number of centroids Daniel@0: % [epochs] (scalar) number of training epochs Daniel@0: % [verbose] (scalar) if <> 0 display additonal information Daniel@0: % Daniel@0: % codes (matrix) codebook vectors Daniel@0: % clusters (vector) cluster number for each sample Daniel@0: % err (scalar) total quantization error for the data set Daniel@0: % Daniel@0: % See also KMEANS_CLUSTERS, SOM_MAKE, SOM_BATCHTRAIN, SOM_SEQTRAIN. Daniel@0: Daniel@0: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Daniel@0: % Function has been renamed by Kimmo Raivio, because matlab65 also have Daniel@0: % kmeans function 1.10.02 Daniel@0: %% input arguments Daniel@0: Daniel@0: if isstruct(D), Daniel@0: switch D.type, Daniel@0: case 'som_map', data = D.codebook; Daniel@0: case 'som_data', data = D.data; Daniel@0: end Daniel@0: else Daniel@0: data = D; Daniel@0: end Daniel@0: [l dim] = size(data); Daniel@0: Daniel@0: if nargin < 4 | isempty(epochs) | isnan(epochs), epochs = 100; end Daniel@0: if nargin < 5, verbose = 0; end Daniel@0: Daniel@0: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Daniel@0: %% action Daniel@0: Daniel@0: rand('state', sum(100*clock)); % init rand generator Daniel@0: Daniel@0: lr = 0.5; % learning rate for sequential k-means Daniel@0: temp = randperm(l); Daniel@0: centroids = data(temp(1:k),:); Daniel@0: res = zeros(k,l); Daniel@0: clusters = zeros(1, l); Daniel@0: Daniel@0: if dim==1, Daniel@0: [codes,clusters,err] = scalar_kmeans(data,k,epochs); Daniel@0: return; Daniel@0: end Daniel@0: Daniel@0: switch method Daniel@0: case 'seq', Daniel@0: len = epochs * l; Daniel@0: l_rate = linspace(lr,0,len); Daniel@0: order = randperm(l); Daniel@0: for iter = 1:len Daniel@0: x = D(order(rem(iter,l)+1),:); Daniel@0: dx = x(ones(k,1),:) - centroids; Daniel@0: [dist nearest] = min(sum(dx.^2,2)); Daniel@0: centroids(nearest,:) = centroids(nearest,:) + l_rate(iter)*dx(nearest,:); Daniel@0: end Daniel@0: [dummy clusters] = min(((ones(k, 1) * sum((data.^2)', 1))' + ... Daniel@0: ones(l, 1) * sum((centroids.^2)',1) - ... Daniel@0: 2.*(data*(centroids')))'); Daniel@0: Daniel@0: case 'batch', Daniel@0: iter = 0; Daniel@0: old_clusters = zeros(k, 1); Daniel@0: while iter2, qe = sum(abs(x-y(bm)))/n; end Daniel@0: if any(nans), Daniel@0: notnan = find(~nans); n = length(nans); Daniel@0: y = full(sparse(notnan,1,y ,n,1)); y(nans) = NaN; Daniel@0: bm = full(sparse(notnan,1,bm,n,1)); bm(nans) = NaN; Daniel@0: if nargout>2, qe = full(sparse(notnan,1,qe,n,1)); qe(nans) = NaN; end Daniel@0: end Daniel@0: Daniel@0: return; Daniel@0: