Daniel@0: function varargout = mirhisto(x,varargin) Daniel@0: % h = mirhisto(x) constructs the histogram from x. The elements of x are Daniel@0: % binned into equally spaced containers. Daniel@0: % Optional argument: Daniel@0: % mirhisto(...,'Number',n): specifies the number of containers. Daniel@0: % Default value : n = 10. Daniel@0: % mirhisto(...,'Ampli'): adds the amplitude of the elements,instead of Daniel@0: % simply counting then. Daniel@0: Daniel@0: Daniel@0: n.key = 'Number'; Daniel@0: n.type = 'Integer'; Daniel@0: n.default = 10; Daniel@0: option.n = n; Daniel@0: Daniel@0: a.key = 'Ampli'; Daniel@0: a.type = 'Boolean'; Daniel@0: a.default = 0; Daniel@0: option.a = a; Daniel@0: Daniel@0: specif.option = option; Daniel@0: Daniel@0: Daniel@0: varargout = mirfunction(@mirhisto,x,varargin,nargout,specif,@init,@main); Daniel@0: Daniel@0: Daniel@0: function [x type] = init(x,option) Daniel@0: type = 'mirhisto'; Daniel@0: Daniel@0: Daniel@0: function h = main(x,option,postoption) Daniel@0: if iscell(x) Daniel@0: x = x{1}; Daniel@0: end Daniel@0: d = get(x,'Data'); Daniel@0: %disp('Computing histogram...') Daniel@0: ddd = cell(1,length(d)); Daniel@0: bbb = cell(1,length(d)); Daniel@0: for i = 1:length(d) Daniel@0: di = d{i}{1}; % To be generalized for segmented data Daniel@0: if iscell(di) Daniel@0: mx = -Inf; Daniel@0: mn = Inf; Daniel@0: nc = size(di,2); Daniel@0: for k = 1:nc Daniel@0: dk = di{k}; Daniel@0: if size(dk,4) == 2 Daniel@0: dk(end+1:end*2,:,:,1) = dk(:,:,:,2); Daniel@0: dk(:,:,:,2) = []; Daniel@0: end Daniel@0: mxk = max(dk); Daniel@0: mnk = min(dk); Daniel@0: if mxk > mx Daniel@0: mx = mxk; Daniel@0: end Daniel@0: if mnk < mn Daniel@0: mn = mnk; Daniel@0: end Daniel@0: end Daniel@0: if isinf(mx) || isinf(mx) Daniel@0: b = []; Daniel@0: dd = []; Daniel@0: else Daniel@0: dd = zeros(1,option.n); Daniel@0: if mn == mx Daniel@0: b(1,:) = mn-ceil(option.n/2) : mn+floor(option.n/2); Daniel@0: else Daniel@0: b(1,:) = mn : (mx-mn)/option.n : mx; Daniel@0: end Daniel@0: for k = 1:nc Daniel@0: dk = di{k}; Daniel@0: for j = 1:option.n Daniel@0: found = find(and(dk>=b(1,j),dk<=b(1,j+1))); Daniel@0: if option.a Daniel@0: dd(1,j) = dd(1,j) + sum(dk(found)); Daniel@0: else Daniel@0: dd(1,j) = dd(1,j) + length(found); Daniel@0: end Daniel@0: end Daniel@0: end Daniel@0: end Daniel@0: else Daniel@0: if isa(x,'mirscalar') Daniel@0: di = permute(di,[3 2 1]); Daniel@0: end Daniel@0: if size(di,4) == 2 Daniel@0: di(end+1:end*2,:,:,1) = di(:,:,:,2); Daniel@0: di(:,:,:,2) = []; Daniel@0: end Daniel@0: nl = size(di,1); Daniel@0: nc = size(di,2); Daniel@0: np = size(di,3); Daniel@0: dd = zeros(1,option.n,np); Daniel@0: for l = 1:np Daniel@0: mx = max(max(di(:,:,l),[],1),[],2); Daniel@0: mn = min(min(di(:,:,l),[],1),[],2); Daniel@0: b(l,:) = mn:(mx-mn)/option.n:mx; Daniel@0: for k = 1:nc Daniel@0: dk = di(:,k,l); Daniel@0: for j = 1:option.n Daniel@0: found = (find(and(dk>=b(l,j),dk<=b(l,j+1)))); Daniel@0: if option.a Daniel@0: dd(1,j,l) = dd(1,j,l) + sum(dk(found)); Daniel@0: else Daniel@0: dd(1,j,l) = dd(1,j,l) + length(found); Daniel@0: end Daniel@0: end Daniel@0: end Daniel@0: end Daniel@0: end Daniel@0: ddd{i} = ipermute(dd,[3 2 1]); Daniel@0: bbb{i}(:,:,1) = b(:,1:end-1); Daniel@0: bbb{i}(:,:,2) = b(:,2:end); Daniel@0: end Daniel@0: h = class(struct,'mirhisto',mirdata(x)); Daniel@0: h = purgedata(h); Daniel@0: h = set(h,'Bins',bbb,'Weight',ddd);