Daniel@0: function [SeneffPreemphasis, SeneffFilterBank, SeneffForward, SeneffBackward] ... Daniel@0: = SeneffEarSetup(fs) Daniel@0: Daniel@0: % This m-function is based on data from the following paper: Daniel@0: % Benjamin D. Bryant and John D. Gowdy, "Simulation of Stages Daniel@0: % I and II of Seneff's Auditory Model (SAM) Using Matlab", and Daniel@0: % published in the Proceedings of the 1993 Matlab User's Group Daniel@0: % Conference. Daniel@0: % Thanks to Benjamin Bryant for supplying us with his filter Daniel@0: % coefficients and the initial organization of this implementation. Daniel@0: Daniel@0: % (c) 1998 Interval Research Corporation Daniel@0: Daniel@0: % Set the following variable to a non-zero value to see a summary Daniel@0: % of the filter bank's behaviour. Daniel@0: plotTests = 0; Daniel@0: Daniel@0: % The following values were taken from Figure 2 of Bryant's paper. Daniel@0: PreemphasisRTheta = [0.86 3.1148863;0.99 0; 0.5 0; 0.95 3.14159]; Daniel@0: Daniel@0: % The following values were taken from Table 1 of Bryant's paper. Daniel@0: % They represent the cascade zeros (R-z and Theta-z), and the Daniel@0: % second order poles (radius and theta) and zeros (radius and theta/2). Daniel@0: % Daniel@0: % R-z Theta-z Radius Theta R-z2 Daniel@0: FilterBankRTheta = [ Daniel@0: 0 3.14159 0.740055 2.633909 0.8 Daniel@0: 0.86 2.997077 0.753637 2.178169 0.8 Daniel@0: 0.86 2.879267 0.775569 1.856744 0.8 Daniel@0: 0.86 2.761458 0.798336 1.617919 0.8 Daniel@0: 0.86 2.643648 0.819169 1.433496 0.8 Daniel@0: 0.86 2.525839 0.837158 1.286795 0.8 Daniel@0: 0.8 2.964876 0.852598 1.167321 0.8 Daniel@0: 0.86 2.408029 0.865429 1.068141 0.8 Daniel@0: 0.86 2.29022 0.876208 0.984489 0.8 Daniel@0: 0.86 2.17241 0.885329 0.912985 0.8 Daniel@0: 0.86 2.054601 0.893116 0.851162 0.8 Daniel@0: 0.86 1.936791 0.899823 0.797179 0.8 Daniel@0: 0.8 2.788161 0.906118 0.749633 0.8 Daniel@0: 0.86 1.818981 0.911236 0.70744 0.8 Daniel@0: 0.86 1.701172 0.915747 0.669742 0.8 Daniel@0: 0.86 1.583362 0.919753 0.635858 0.8 Daniel@0: 0.86 1.465552 0.923335 0.605237 0.8 Daniel@0: 0.86 1.347743 0.926565 0.57743 0.8 Daniel@0: 0.8 2.611447 0.929914 0.552065 0.8 Daniel@0: 0.86 1.229933 0.932576 0.528834 0.8 Daniel@0: 0.86 1.112123 0.944589 0.487783 0.75 Daniel@0: 0.86 0.994314 0.957206 0.452645 0.660714 Daniel@0: 0.86 0.876504 0.956548 0.42223 0.672143 Daniel@0: 0.86 0.758694 0.956653 0.395644 0.682143 Daniel@0: 0.8 2.434732 0.956518 0.372208 0.690966 Daniel@0: 0.86 0.640885 0.956676 0.351393 0.69881 Daniel@0: 0.86 0.523075 0.956741 0.316044 0.712143 Daniel@0: 0.8 2.258018 0.956481 0.287157 0.723052 Daniel@0: 0.8 2.081304 0.956445 0.263108 0.732143 Daniel@0: 0.8 1.904589 0.956481 0.242776 0.739835 Daniel@0: 0.86 0.405265 0.958259 0.217558 0.749384 Daniel@0: 0.8 1.727875 0.963083 0.197086 0.757143 Daniel@0: 0.8 1.55116 0.969757 0.175115 0.769048 Daniel@0: 0.8 1.374446 0.97003 0.153697 0.780662 Daniel@0: 0.8 1.197732 0.970382 0.134026 0.791337 Daniel@0: 0.8 1.021017 0.970721 0.118819 0.799596 Daniel@0: 0.8 1.5 0.970985 0.106711 0.8 Daniel@0: 0.8 1.2 0.971222 0.096843 0.8 Daniel@0: 0.8 1 0.97144 0.088645 0.8 Daniel@0: 0.8 0.9 0.971645 0.081727 0.8]; Daniel@0: Daniel@0: % Let's plot the cascade zero locations and the locations of the Daniel@0: % pole and zeros in the resonator. Daniel@0: if plotTests Daniel@0: clf; Daniel@0: subplot(3,3,1); Daniel@0: plot(FilterBankRTheta(:,1).*exp(i*FilterBankRTheta(:,2))) Daniel@0: axis([-1 1 0 1]) Daniel@0: title('Cascade Zero Locations') Daniel@0: Daniel@0: subplot(3,3,2); Daniel@0: plot([FilterBankRTheta(:,3).*exp(i*FilterBankRTheta(:,4)) ... Daniel@0: FilterBankRTheta(:,5).*exp(i*FilterBankRTheta(:,4)/2)],'+') Daniel@0: title('Resonator Pole/Zero') Daniel@0: drawnow; Daniel@0: end Daniel@0: Daniel@0: % Convert r-theta form, first into a list of roots, then a polynomial Daniel@0: roots=exp(i*PreemphasisRTheta(:,2)).*PreemphasisRTheta(:,1); Daniel@0: SeneffPreemphasis=real(poly([roots;conj(roots)])); Daniel@0: Daniel@0: % Plot the preemphasis filter response, if desired Daniel@0: if plotTests Daniel@0: subplot(3,3,3); Daniel@0: freqScale=(0:255)/256*8000; Daniel@0: freqresp = FreqResp(SeneffPreemphasis,[1], freqScale, 16000); Daniel@0: semilogx(freqScale,freqresp) Daniel@0: title('Preemphasis Response'); Daniel@0: axis([100 10000 -60 20]) Daniel@0: drawnow; Daniel@0: end Daniel@0: Daniel@0: % Now figure out the second order sections that make up the main Daniel@0: % filter bank cascade. We put the zeros into the numerator (b's) Daniel@0: % and there are no poles. Just to keep things simpler, we adjust Daniel@0: % the gain of each filter to keep it unity gain at DC. Daniel@0: [channels,width] = size(FilterBankRTheta); Daniel@0: roots=exp(i*FilterBankRTheta(:,2)).*FilterBankRTheta(:,1); Daniel@0: SeneffFilterBank = zeros(channels,5); Daniel@0: for j=1:channels Daniel@0: SeneffFilterBank(j,1:3) = poly([roots(j) conj(roots(j))]); Daniel@0: SeneffFilterBank(j,1:3) = SeneffFilterBank(j,1:3)/sum(SeneffFilterBank(j,1:3)); Daniel@0: end Daniel@0: Daniel@0: % Plot the cascade zero responses, if desired. Daniel@0: if plotTests Daniel@0: subplot(3,3,4); Daniel@0: y=soscascade([1 zeros(1,511)],SeneffFilterBank); Daniel@0: freqresp=20*log10(abs(fft(y(1:5:40,:)'))); Daniel@0: freqScale=(0:511)/512*16000; Daniel@0: semilogx(freqScale(1:256),freqresp(1:256,:)) Daniel@0: axis([100 10000 -150 0]); Daniel@0: title('Cascade Response'); Daniel@0: drawnow; Daniel@0: end Daniel@0: Daniel@0: % Now figure out the resonating filters. Each of these resonators Daniel@0: % is a double pole-zero pair. Daniel@0: zlocs = FilterBankRTheta(:,5).*exp(i*FilterBankRTheta(:,4)/2); Daniel@0: plocs = FilterBankRTheta(:,3).*exp(i*FilterBankRTheta(:,4)); Daniel@0: SeneffForward = zeros(5,channels); Daniel@0: SeneffBackward = zeros(5,channels); Daniel@0: Daniel@0: for j=1:channels Daniel@0: SeneffForward(:,j) = real(poly([zlocs(j) conj(zlocs(j)) ... Daniel@0: zlocs(j) conj(zlocs(j))]))'; Daniel@0: SeneffBackward(:,j) = real(poly([plocs(j) conj(plocs(j)) ... Daniel@0: plocs(j) conj(plocs(j))]))'; Daniel@0: end Daniel@0: Daniel@0: % Now plot the frequency response of just the resonating filters. Daniel@0: % These are all bandpass filters. Daniel@0: if plotTests Daniel@0: subplot(3,3,5); Daniel@0: impulse = [1 zeros(1,255)]; Daniel@0: y=zeros(256,channels); Daniel@0: for j=1:40 Daniel@0: y(:,j) = filter(SeneffForward(:,j),SeneffBackward(:,j),impulse)'; Daniel@0: end Daniel@0: freqresp=20*log10(abs(fft(y(:,1:5:40)))); Daniel@0: freqScale=(0:255)/256*16000; Daniel@0: semilogx(freqScale(1:128),freqresp(1:128,:)) Daniel@0: axis([100 10000 -30 40]); Daniel@0: title('Resonators Response') Daniel@0: drawnow; Daniel@0: end Daniel@0: Daniel@0: % The plot below shows the overall response of the preemphasis filters Daniel@0: % along with the just-designed cascade of zeros. Daniel@0: if plotTests Daniel@0: subplot(3,3,6); Daniel@0: impulse = [1 zeros(1,511)]; Daniel@0: y=soscascade(filter(SeneffPreemphasis, [1], impulse), ... Daniel@0: SeneffFilterBank); Daniel@0: freqresp=20*log10(abs(fft(y(1:5:40,:)'))); Daniel@0: freqScale=(0:511)/512*16000; Daniel@0: semilogx(freqScale(1:256),freqresp(1:256,:)) Daniel@0: axis([100 10000 -100 25]); Daniel@0: title('Preemphasis+Cascade'); Daniel@0: drawnow; Daniel@0: end Daniel@0: Daniel@0: % Now we need to normalize the gain of each channel. We run an impulse Daniel@0: % through the preemphasis filter, and then through the cascade of zeros. Daniel@0: % Finally, we run it through each of the resonator filters. Daniel@0: impulse = [1 zeros(1,255)]; Daniel@0: y=soscascade(filter(SeneffPreemphasis, [1], impulse), ... Daniel@0: SeneffFilterBank); Daniel@0: for j=1:channels Daniel@0: y(j,:) = filter(SeneffForward(:,j),SeneffBackward(:,j),y(j,:)); Daniel@0: end Daniel@0: Daniel@0: % Now we have impulse responses from each filter. We can find the FFT Daniel@0: % and then find the gain peak. We divide each forward polynomial by the Daniel@0: % maximum gain (to normalize) and then multiply by the desired low Daniel@0: % frequency roll-off. The Bryant paper says that the last 24 channels Daniel@0: % should be cut at 6dB per octave and that this occurs at 1600 Hz, but Daniel@0: % it looks to me like the gain change happens at 3200 Hz. Daniel@0: freqresp=abs(fft(y')); Daniel@0: gain = ones(1,channels)./max(freqresp); Daniel@0: cfs = FilterBankRTheta(:,4)/pi*fs/2; Daniel@0: rolloff = min(cfs/1600,1); Daniel@0: Daniel@0: for j=1:channels Daniel@0: SeneffForward(:,j)=SeneffForward(:,j)*gain(j)*rolloff(j); Daniel@0: end Daniel@0: Daniel@0: % All Done. The figure below should match Figure 3 of Bryant's paper. Daniel@0: if plotTests Daniel@0: subplot(3,3,8); Daniel@0: impulse = [1 zeros(1,511)]; Daniel@0: y=soscascade(filter(SeneffPreemphasis, [1], impulse), ... Daniel@0: SeneffFilterBank); Daniel@0: for j=1:channels Daniel@0: y(j,:) = filter(SeneffForward(:,j),SeneffBackward(:,j),y(j,:)); Daniel@0: end Daniel@0: Daniel@0: freqresp=20*log10(abs(fft(y(1:5:40,:)'))); Daniel@0: freqScale=(0:511)/512*16000; Daniel@0: plot(freqScale(1:256),freqresp(1:256,:)) Daniel@0: axis([100 10000 -120 0]); Daniel@0: title('Magnitude Response vs. Linear Frequency'); Daniel@0: drawnow; Daniel@0: end Daniel@0: Daniel@0: Daniel@0: function mag=FreqResp(b,a,f,fs) Daniel@0: cf = exp(i*2*pi*f/fs); Daniel@0: num = 0; Daniel@0: for i=1:length(b) Daniel@0: num = num + b(end-i+1)*cf.^i; Daniel@0: end Daniel@0: Daniel@0: denom = 0; Daniel@0: for i=1:length(a) Daniel@0: denom = denom + a(end-i+1)*cf.^i; Daniel@0: end Daniel@0: mag = 20*log10(abs(num./denom));