Daniel@0: function [h, hdata] = rbfhess(net, x, t, hdata) Daniel@0: %RBFHESS Evaluate the Hessian matrix for RBF network. Daniel@0: % Daniel@0: % Description Daniel@0: % H = RBFHESS(NET, X, T) takes an RBF network data structure NET, a Daniel@0: % matrix X of input values, and a matrix T of target values and returns Daniel@0: % the full Hessian matrix H corresponding to the second derivatives of Daniel@0: % the negative log posterior distribution, evaluated for the current Daniel@0: % weight and bias values as defined by NET. Currently, the Daniel@0: % implementation only computes the Hessian for the output layer Daniel@0: % weights. Daniel@0: % Daniel@0: % [H, HDATA] = RBFHESS(NET, X, T) returns both the Hessian matrix H and Daniel@0: % the contribution HDATA arising from the data dependent term in the Daniel@0: % Hessian. Daniel@0: % Daniel@0: % H = RBFHESS(NET, X, T, HDATA) takes a network data structure NET, a Daniel@0: % matrix X of input values, and a matrix T of target values, together Daniel@0: % with the contribution HDATA arising from the data dependent term in Daniel@0: % the Hessian, and returns the full Hessian matrix H corresponding to Daniel@0: % the second derivatives of the negative log posterior distribution. Daniel@0: % This version saves computation time if HDATA has already been Daniel@0: % evaluated for the current weight and bias values. Daniel@0: % Daniel@0: % See also Daniel@0: % MLPHESS, HESSCHEK, EVIDENCE Daniel@0: % Daniel@0: Daniel@0: % Copyright (c) Ian T Nabney (1996-2001) Daniel@0: Daniel@0: % Check arguments for consistency Daniel@0: errstring = consist(net, 'rbf', x, t); Daniel@0: if ~isempty(errstring); Daniel@0: error(errstring); Daniel@0: end Daniel@0: Daniel@0: if nargin == 3 Daniel@0: % Data term in Hessian needs to be computed Daniel@0: [a, z] = rbffwd(net, x); Daniel@0: hdata = datahess(net, z, t); Daniel@0: end Daniel@0: Daniel@0: % Add in effect of regularisation Daniel@0: [h, hdata] = hbayes(net, hdata); Daniel@0: Daniel@0: % Sub-function to compute data part of Hessian Daniel@0: function hdata = datahess(net, z, t) Daniel@0: Daniel@0: % Only works for output layer Hessian currently Daniel@0: if (isfield(net, 'mask') & ~any(net.mask(... Daniel@0: 1:(net.nwts - net.nout*(net.nhidden+1))))) Daniel@0: hdata = zeros(net.nwts); Daniel@0: ndata = size(z, 1); Daniel@0: out_hess = [z ones(ndata, 1)]'*[z ones(ndata, 1)]; Daniel@0: for j = 1:net.nout Daniel@0: hdata = rearrange_hess(net, j, out_hess, hdata); Daniel@0: end Daniel@0: else Daniel@0: error('Output layer Hessian only.'); Daniel@0: end Daniel@0: return Daniel@0: Daniel@0: % Sub-function to rearrange Hessian matrix Daniel@0: function hdata = rearrange_hess(net, j, out_hess, hdata) Daniel@0: Daniel@0: % Because all the biases come after all the input weights, Daniel@0: % we have to rearrange the blocks that make up the network Hessian. Daniel@0: % This function assumes that we are on the jth output and that all outputs Daniel@0: % are independent. Daniel@0: Daniel@0: % Start of bias weights block Daniel@0: bb_start = net.nwts - net.nout + 1; Daniel@0: % Start of weight block for jth output Daniel@0: ob_start = net.nwts - net.nout*(net.nhidden+1) + (j-1)*net.nhidden... Daniel@0: + 1; Daniel@0: % End of weight block for jth output Daniel@0: ob_end = ob_start + net.nhidden - 1; Daniel@0: % Index of bias weight Daniel@0: b_index = bb_start+(j-1); Daniel@0: % Put input weight block in right place Daniel@0: hdata(ob_start:ob_end, ob_start:ob_end) = out_hess(1:net.nhidden, ... Daniel@0: 1:net.nhidden); Daniel@0: % Put second derivative of bias weight in right place Daniel@0: hdata(b_index, b_index) = out_hess(net.nhidden+1, net.nhidden+1); Daniel@0: % Put cross terms (input weight v bias weight) in right place Daniel@0: hdata(b_index, ob_start:ob_end) = out_hess(net.nhidden+1, ... Daniel@0: 1:net.nhidden); Daniel@0: hdata(ob_start:ob_end, b_index) = out_hess(1:net.nhidden, ... Daniel@0: net.nhidden+1); Daniel@0: Daniel@0: return