Daniel@0: function [y, extra, invhess] = rbfevfwd(net, x, t, x_test, invhess) Daniel@0: %RBFEVFWD Forward propagation with evidence for RBF Daniel@0: % Daniel@0: % Description Daniel@0: % Y = RBFEVFWD(NET, X, T, X_TEST) takes a network data structure NET Daniel@0: % together with the input X and target T training data and input test Daniel@0: % data X_TEST. It returns the normal forward propagation through the Daniel@0: % network Y together with a matrix EXTRA which consists of error bars Daniel@0: % (variance) for a regression problem or moderated outputs for a Daniel@0: % classification problem. Daniel@0: % Daniel@0: % The optional argument (and return value) INVHESS is the inverse of Daniel@0: % the network Hessian computed on the training data inputs and targets. Daniel@0: % Passing it in avoids recomputing it, which can be a significant Daniel@0: % saving for large training sets. Daniel@0: % Daniel@0: % See also Daniel@0: % FEVBAYES Daniel@0: % Daniel@0: Daniel@0: % Copyright (c) Ian T Nabney (1996-2001) Daniel@0: Daniel@0: y = rbffwd(net, x_test); Daniel@0: % RBF outputs must be linear, so just pass them twice (second copy is Daniel@0: % not used Daniel@0: if nargin == 4 Daniel@0: [extra, invhess] = fevbayes(net, y, y, x, t, x_test); Daniel@0: else Daniel@0: [extra, invhess] = fevbayes(net, y, y, x, t, x_test, invhess); Daniel@0: end