Daniel@0: function net = knn(nin, nout, k, tr_in, tr_targets) Daniel@0: %KNN Creates a K-nearest-neighbour classifier. Daniel@0: % Daniel@0: % Description Daniel@0: % NET = KNN(NIN, NOUT, K, TR_IN, TR_TARGETS) creates a KNN model NET Daniel@0: % with input dimension NIN, output dimension NOUT and K neighbours. Daniel@0: % The training data is also stored in the data structure and the Daniel@0: % targets are assumed to be using a 1-of-N coding. Daniel@0: % Daniel@0: % The fields in NET are Daniel@0: % type = 'knn' Daniel@0: % nin = number of inputs Daniel@0: % nout = number of outputs Daniel@0: % tr_in = training input data Daniel@0: % tr_targets = training target data Daniel@0: % Daniel@0: % See also Daniel@0: % KMEANS, KNNFWD Daniel@0: % Daniel@0: Daniel@0: % Copyright (c) Ian T Nabney (1996-2001) Daniel@0: Daniel@0: Daniel@0: net.type = 'knn'; Daniel@0: net.nin = nin; Daniel@0: net.nout = nout; Daniel@0: net.k = k; Daniel@0: errstring = consist(net, 'knn', tr_in, tr_targets); Daniel@0: if ~isempty(errstring) Daniel@0: error(errstring); Daniel@0: end Daniel@0: net.tr_in = tr_in; Daniel@0: net.tr_targets = tr_targets; Daniel@0: