Daniel@0: %DEMGMM5 Demonstrate density modelling with a PPCA mixture model. Daniel@0: % Daniel@0: % Description Daniel@0: % The problem consists of modelling data generated by a mixture of Daniel@0: % three Gaussians in 2 dimensions with a mixture model using full Daniel@0: % covariance matrices. The priors are 0.3, 0.5 and 0.2; the centres Daniel@0: % are (2, 3.5), (0, 0) and (0,2); the variances are (0.16, 0.64) axis Daniel@0: % aligned, (0.25, 1) rotated by 30 degrees and the identity matrix. The Daniel@0: % first figure contains a scatter plot of the data. Daniel@0: % Daniel@0: % A mixture model with three one-dimensional PPCA components is trained Daniel@0: % using EM. The parameter vector is printed before training and after Daniel@0: % training. The parameter vector consists of priors (the column), and Daniel@0: % centres (given as (x, y) pairs as the next two columns). Daniel@0: % Daniel@0: % The second figure is a 3 dimensional view of the density function, Daniel@0: % while the third shows the axes of the 1-standard deviation ellipses Daniel@0: % for the three components of the mixture model together with the one Daniel@0: % standard deviation along the principal component of each mixture Daniel@0: % model component. Daniel@0: % Daniel@0: % See also Daniel@0: % GMM, GMMINIT, GMMEM, GMMPROB, PPCA Daniel@0: % Daniel@0: Daniel@0: % Copyright (c) Ian T Nabney (1996-2001) Daniel@0: Daniel@0: Daniel@0: ndata = 500; Daniel@0: data = randn(ndata, 2); Daniel@0: prior = [0.3 0.5 0.2]; Daniel@0: % Mixture model swaps clusters 1 and 3 Daniel@0: datap = [0.2 0.5 0.3]; Daniel@0: datac = [0 2; 0 0; 2 3.5]; Daniel@0: datacov = repmat(eye(2), [1 1 3]); Daniel@0: data1 = data(1:prior(1)*ndata,:); Daniel@0: data2 = data(prior(1)*ndata+1:(prior(2)+prior(1))*ndata, :); Daniel@0: data3 = data((prior(1)+prior(2))*ndata +1:ndata, :); Daniel@0: Daniel@0: % First cluster has axis aligned variance and centre (2, 3.5) Daniel@0: data1(:, 1) = data1(:, 1)*0.1 + 2.0; Daniel@0: data1(:, 2) = data1(:, 2)*0.8 + 3.5; Daniel@0: datacov(:, :, 3) = [0.1*0.1 0; 0 0.8*0.8]; Daniel@0: Daniel@0: % Second cluster has variance axes rotated by 30 degrees and centre (0, 0) Daniel@0: rotn = [cos(pi/6) -sin(pi/6); sin(pi/6) cos(pi/6)]; Daniel@0: data2(:,1) = data2(:, 1)*0.2; Daniel@0: data2 = data2*rotn; Daniel@0: datacov(:, :, 2) = rotn' * [0.04 0; 0 1] * rotn; Daniel@0: Daniel@0: % Third cluster is at (0,2) Daniel@0: data3(:, 2) = data3(:, 2)*0.1; Daniel@0: data3 = data3 + repmat([0 2], prior(3)*ndata, 1); Daniel@0: Daniel@0: % Put the dataset together again Daniel@0: data = [data1; data2; data3]; Daniel@0: Daniel@0: ndata = 100; % Number of data points. Daniel@0: noise = 0.2; % Standard deviation of noise distribution. Daniel@0: x = [0:1/(2*(ndata - 1)):0.5]'; Daniel@0: randn('state', 1); Daniel@0: rand('state', 1); Daniel@0: t = sin(2*pi*x) + noise*randn(ndata, 1); Daniel@0: Daniel@0: % Fit three one-dimensional PPCA models Daniel@0: ncentres = 3; Daniel@0: ppca_dim = 1; Daniel@0: Daniel@0: clc Daniel@0: disp('This demonstration illustrates the use of a Gaussian mixture model') Daniel@0: disp('with a probabilistic PCA covariance structure to approximate the') Daniel@0: disp('unconditional probability density of data in a two-dimensional space.') Daniel@0: disp('We begin by generating the data from a mixture of three Gaussians and') Daniel@0: disp('plotting it.') Daniel@0: disp(' ') Daniel@0: disp('The first cluster has axis aligned variance and centre (0, 2).') Daniel@0: disp('The variance parallel to the x-axis is significantly greater') Daniel@0: disp('than that parallel to the y-axis.') Daniel@0: disp('The second cluster has variance axes rotated by 30 degrees') Daniel@0: disp('and centre (0, 0). The third cluster has significant variance') Daniel@0: disp('parallel to the y-axis and centre (2, 3.5).') Daniel@0: disp(' ') Daniel@0: disp('Press any key to continue.') Daniel@0: pause Daniel@0: Daniel@0: fh1 = figure; Daniel@0: plot(data(:, 1), data(:, 2), 'o') Daniel@0: set(gca, 'Box', 'on') Daniel@0: axis equal Daniel@0: hold on Daniel@0: Daniel@0: mix = gmm(2, ncentres, 'ppca', ppca_dim); Daniel@0: options = foptions; Daniel@0: options(14) = 10; Daniel@0: options(1) = -1; % Switch off all warnings Daniel@0: Daniel@0: % Just use 10 iterations of k-means in initialisation Daniel@0: % Initialise the model parameters from the data Daniel@0: mix = gmminit(mix, data, options); Daniel@0: disp('The mixture model has three components with 1-dimensional') Daniel@0: disp('PPCA subspaces. The model parameters after initialisation using') Daniel@0: disp('the k-means algorithm are as follows') Daniel@0: disp(' Priors Centres') Daniel@0: disp([mix.priors' mix.centres]) Daniel@0: disp(' ') Daniel@0: disp('Press any key to continue') Daniel@0: pause Daniel@0: Daniel@0: options(1) = 1; % Prints out error values. Daniel@0: options(14) = 30; % Number of iterations. Daniel@0: Daniel@0: disp('We now train the model using the EM algorithm for up to 30 iterations.') Daniel@0: disp(' ') Daniel@0: disp('Press any key to continue.') Daniel@0: pause Daniel@0: Daniel@0: [mix, options, errlog] = gmmem(mix, data, options); Daniel@0: disp('The trained model has priors and centres:') Daniel@0: disp(' Priors Centres') Daniel@0: disp([mix.priors' mix.centres]) Daniel@0: Daniel@0: % Now plot the result Daniel@0: for i = 1:ncentres Daniel@0: % Plot the PC vectors Daniel@0: v = mix.U(:,:,i); Daniel@0: start=mix.centres(i,:)-sqrt(mix.lambda(i))*(v'); Daniel@0: endpt=mix.centres(i,:)+sqrt(mix.lambda(i))*(v'); Daniel@0: linex = [start(1) endpt(1)]; Daniel@0: liney = [start(2) endpt(2)]; Daniel@0: line(linex, liney, 'Color', 'k', 'LineWidth', 3) Daniel@0: % Plot ellipses of one standard deviation Daniel@0: theta = 0:0.02:2*pi; Daniel@0: x = sqrt(mix.lambda(i))*cos(theta); Daniel@0: y = sqrt(mix.covars(i))*sin(theta); Daniel@0: % Rotate ellipse axes Daniel@0: rot_matrix = [v(1) -v(2); v(2) v(1)]; Daniel@0: ellipse = (rot_matrix*([x; y]))'; Daniel@0: % Adjust centre Daniel@0: ellipse = ellipse + ones(length(theta), 1)*mix.centres(i,:); Daniel@0: plot(ellipse(:,1), ellipse(:,2), 'r-') Daniel@0: end Daniel@0: Daniel@0: disp(' ') Daniel@0: disp('Press any key to exit') Daniel@0: pause Daniel@0: close (fh1); Daniel@0: clear all;