Daniel@0: Daniel@0:
Daniel@0:Daniel@0: Daniel@0: d2 = somfwd(net, x) Daniel@0:Daniel@0: Daniel@0: Daniel@0:
d2 = somfwd(net, x)
propagates the data matrix x
through
Daniel@0: a SOM net
, returning the squared distance matrix d2
with
Daniel@0: dimension nin
by num_nodes
. The $i$th row represents the
Daniel@0: squared Euclidean distance to each of the nodes of the SOM.
Daniel@0:
Daniel@0: [d2, win_nodes] = somfwd(net, x)
also returns the indices of the
Daniel@0: winning nodes for each pattern.
Daniel@0:
Daniel@0:
The following code fragment creates a SOM with a $5times 5$ map for an Daniel@0: 8-dimensional data space. It then applies the test data to the map. Daniel@0:
Daniel@0: Daniel@0: net = som(8, [5, 5]); Daniel@0: [d2, wn] = somfwd(net, test_data); Daniel@0:Daniel@0: Daniel@0: Daniel@0:
som
, somtrain
Copyright (c) Ian T Nabney (1996-9) Daniel@0: Daniel@0: Daniel@0: Daniel@0: