Daniel@0: Daniel@0: Daniel@0: Daniel@0: Netlab Reference Manual somfwd Daniel@0: Daniel@0: Daniel@0: Daniel@0:

somfwd Daniel@0:

Daniel@0:

Daniel@0: Purpose Daniel@0:

Daniel@0: Forward propagation through a Self-Organising Map. Daniel@0: Daniel@0:

Daniel@0: Synopsis Daniel@0:

Daniel@0:
Daniel@0: 
Daniel@0: d2 = somfwd(net, x)
Daniel@0: 
Daniel@0: Daniel@0: Daniel@0:

Daniel@0: Description Daniel@0:

Daniel@0: d2 = somfwd(net, x) propagates the data matrix x through Daniel@0: a SOM net, returning the squared distance matrix d2 with Daniel@0: dimension nin by num_nodes. The $i$th row represents the Daniel@0: squared Euclidean distance to each of the nodes of the SOM. Daniel@0: Daniel@0:

[d2, win_nodes] = somfwd(net, x) also returns the indices of the Daniel@0: winning nodes for each pattern. Daniel@0: Daniel@0:

Daniel@0: Example Daniel@0:

Daniel@0: Daniel@0:

The following code fragment creates a SOM with a $5times 5$ map for an Daniel@0: 8-dimensional data space. It then applies the test data to the map. Daniel@0:

Daniel@0: 
Daniel@0: net = som(8, [5, 5]);
Daniel@0: [d2, wn] = somfwd(net, test_data);
Daniel@0: 
Daniel@0: Daniel@0: Daniel@0:

Daniel@0: See Also Daniel@0:

Daniel@0: som, somtrain
Daniel@0: Pages: Daniel@0: Index Daniel@0:
Daniel@0:

Copyright (c) Ian T Nabney (1996-9) Daniel@0: Daniel@0: Daniel@0: Daniel@0: