Daniel@0: Daniel@0: Daniel@0: Daniel@0: Netlab Reference Manual glminit Daniel@0: Daniel@0: Daniel@0: Daniel@0:

glminit Daniel@0:

Daniel@0:

Daniel@0: Purpose Daniel@0:

Daniel@0: Initialise the weights in a generalized linear model. Daniel@0: Daniel@0:

Daniel@0: Synopsis Daniel@0:

Daniel@0:
Daniel@0: net = glminit(net, prior)
Daniel@0: 
Daniel@0: Daniel@0: Daniel@0:

Daniel@0: Description Daniel@0:

Daniel@0: Daniel@0:

net = glminit(net, prior) takes a generalized linear model Daniel@0: net and sets the weights and biases by sampling from a Gaussian Daniel@0: distribution. If prior is a scalar, then all of the parameters Daniel@0: (weights and biases) are sampled from a single isotropic Gaussian with Daniel@0: inverse variance equal to prior. If prior is a data Daniel@0: structure similar to that in mlpprior but for a single layer of Daniel@0: weights, then the parameters Daniel@0: are sampled from multiple Gaussians according to their groupings Daniel@0: (defined by the index field) with corresponding variances Daniel@0: (defined by the alpha field). Daniel@0: Daniel@0:

Daniel@0: See Also Daniel@0:

Daniel@0: glm, glmpak, glmunpak, mlpinit, mlpprior
Daniel@0: Pages: Daniel@0: Index Daniel@0:
Daniel@0:

Copyright (c) Ian T Nabney (1996-9) Daniel@0: Daniel@0: Daniel@0: Daniel@0: