Daniel@0: Daniel@0:
Daniel@0:Daniel@0: demgpareDaniel@0: Daniel@0: Daniel@0:
x1
, x2
and
Daniel@0: x3
, and one target variable
Daniel@0: t
. The
Daniel@0: target data is generated by computing sin(2*pi*x1)
and adding Gaussian
Daniel@0: noise, x2 is a copy of x1 with a higher level of added
Daniel@0: noise, and x3 is sampled randomly from a Gaussian distribution.
Daniel@0: A Gaussian Process, is
Daniel@0: trained by optimising the hyperparameters
Daniel@0: using the scaled conjugate gradient algorithm. The final values of the
Daniel@0: hyperparameters show that the model successfully identifies the importance
Daniel@0: of each input.
Daniel@0:
Daniel@0: demgp
, gp
, gperr
, gpfwd
, gpgrad
, gpinit
, scg
Copyright (c) Ian T Nabney (1996-9) Daniel@0: Daniel@0: Daniel@0: Daniel@0: