Daniel@0: Daniel@0: Daniel@0: Daniel@0: Netlab Reference Manual confmat Daniel@0: Daniel@0: Daniel@0: Daniel@0:

confmat Daniel@0:

Daniel@0:

Daniel@0: Purpose Daniel@0:

Daniel@0: Compute a confusion matrix. Daniel@0: Daniel@0:

Daniel@0: Synopsis Daniel@0:

Daniel@0:
Daniel@0: [C, rate] = confmat(y, t)
Daniel@0: Daniel@0: Daniel@0:

Daniel@0: Description Daniel@0:

Daniel@0: [C, rate] = confmat(y, t) computes the confusion matrix C Daniel@0: and classification performance rate for the predictions mat{y} Daniel@0: compared with the targets t. The data is assumed to be in a Daniel@0: 1-of-N encoding, unless there is just one column, when it is assumed to Daniel@0: be a 2 class problem with a 0-1 encoding. Each row of y and t Daniel@0: corresponds to a single example. Daniel@0: Daniel@0:

In the confusion matrix, the rows represent the true classes and the Daniel@0: columns the predicted classes. The vector rate has two entries: Daniel@0: the percentage of correct classifications and the total number of Daniel@0: correct classifications. Daniel@0: Daniel@0:

Daniel@0: See Also Daniel@0:

Daniel@0: conffig, demtrain
Daniel@0: Pages: Daniel@0: Index Daniel@0:
Daniel@0:

Copyright (c) Ian T Nabney (1996-9) Daniel@0: Daniel@0: Daniel@0: Daniel@0: