Daniel@0: % Test the code using the dag in Fig 1 of Jensen, Jensen, Dittmer, Daniel@0: % "From influence diagrams to junction trees", UAI 94 Daniel@0: Daniel@0: % By reverse enginering Fig 2, we infer that the following arcs should Daniel@0: % be absent from the original dag: b->d1, e->d2, f->d2, g->d4 Daniel@0: a=1; b=2; d1=3; c=4; d=5; e=6; f=7; g=8; d2=9; d4=10; i=11; h=12; d3=13; l=14; j=15; k=16; Daniel@0: dag=zeros(16); Daniel@0: dag(a,c)=1; Daniel@0: %dag(b,[c d d1])=1; Daniel@0: dag(b,[c d])=1; Daniel@0: dag(d1,d)=1; Daniel@0: dag(c,e)=1; Daniel@0: dag(d,[e f])=1; Daniel@0: %dag(e,[g d2])=1; Daniel@0: dag(e,[g])=1; Daniel@0: %dag(f,[d2 h])=1; Daniel@0: dag(f,[h])=1; Daniel@0: %dag(g,[d4 i])=1; Daniel@0: dag(g,[i])=1; Daniel@0: dag(d2,i)=1; Daniel@0: dag(d4,l)=1; Daniel@0: dag(i,l)=1; Daniel@0: dag(h,[j k])=1; Daniel@0: dag(d3,k)=1; Daniel@0: Daniel@0: Daniel@0: [MG, moral_edges] = moralize(dag); Daniel@0: MG(j,k)=1; MG(k,j)=1; % simulate having a common utility child Daniel@0: % MG now equals fig 2 Daniel@0: order = [l j k i h a c d d4 g d3 d2 f e d1 b]; Daniel@0: [MTG, cliques, fill_ins] = triangulate(MG, order); Daniel@0: % MTG equals fig 3 Daniel@0: ns = 2*ones(1,16); Daniel@0: [jtree, root, cliques2] = mk_strong_jtree(cliques, ns, order, MTG); Daniel@0: jtree2 = mk_rooted_tree(jtree, root); Daniel@0: % jtree2 equals fig 4, with their arrows reversed