Daniel@0: % Consider a 3x3 lattice with 4-nearest neighbor connectivity Daniel@0: Daniel@0: % 1 - 2 - 3 Daniel@0: % | | | Daniel@0: % 4 - 5 - 6 Daniel@0: % | | | Daniel@0: % 7 - 8 - 9 Daniel@0: Daniel@0: N = 3; Daniel@0: G = mk_2D_lattice(N,N,4); Daniel@0: G0 = G; Daniel@0: Daniel@0: % Now add in the diagonal edges Daniel@0: Daniel@0: if 0 Daniel@0: % 1 - 2 - 3 Daniel@0: % | x | x | Daniel@0: % 4 - 5 - 6 Daniel@0: % | x | x | Daniel@0: % 7 - 8 - 9 Daniel@0: Daniel@0: G(1,5)=1; G(5,1)=1; Daniel@0: G(2,6)=1; G(6,2)=1; Daniel@0: G(4,2)=1; G(2,4)=1; Daniel@0: G(5,3)=1; G(3,5)=1; Daniel@0: Daniel@0: G(4,8)=1; G(8,4)=1; Daniel@0: G(5,9)=1; G(9,5)=1; Daniel@0: G(7,5)=1; G(5,7)=1; Daniel@0: G(8,6)=1; G(6,8)=1; Daniel@0: end Daniel@0: Daniel@0: % 1 - 2 - 3 Daniel@0: % | / | \ | Daniel@0: % 4 - 5 - 6 Daniel@0: % | \ | / | Daniel@0: % 7 - 8 - 9 Daniel@0: Daniel@0: G(2,6)=1; G(6,2)=1; Daniel@0: G(4,2)=1; G(2,4)=1; Daniel@0: G(4,8)=1; G(8,4)=1; Daniel@0: G(8,6)=1; G(6,8)=1; Daniel@0: Daniel@0: % Is this a chordal (triangulated) graph? No! Daniel@0: Daniel@0: assert(~check_triangulated(G)) Daniel@0: Daniel@0: % The reason is that there is a chordless cycle around the outside nodes. Daniel@0: % To see this, imagine "picking up" node 5, leaving the rest on the plane Daniel@0: % (like a hoop skirt, or a tent), as shown below Daniel@0: Daniel@0: % 1 - 2 - 3 Daniel@0: % | / \ | Daniel@0: % 4 6 Daniel@0: % | \ / | Daniel@0: % 7 - 8 - 9 Daniel@0: Daniel@0: Daniel@0: % However, if we add in the 4-6 arc, it will be chordal. Daniel@0: Daniel@0: G2 = G; Daniel@0: G2(4,6)=1; G2(6,4)=1; Daniel@0: assert(check_triangulated(G2)) Daniel@0: Daniel@0: % Or we can add in the 2-8 arc Daniel@0: G2 = G; Daniel@0: G2(2,8)=1; G2(8,2)=1; Daniel@0: assert(check_triangulated(G2)) Daniel@0: Daniel@0: Daniel@0: if 0 Daniel@0: % 4x4 lattice with cross arcs Daniel@0: N=4;G0 = mk_2D_lattice(N,N,4); Daniel@0: vs = [1 6; 2 5; 2 7; 3 6; 3 8; 4 7; ... Daniel@0: 5 10; 6 9; 6 11; 7 10; 7 12; 8 11;... Daniel@0: 9 14; 10 13; 10 15; 11 14; 11 16; 12 15]; Daniel@0: for i=1:size(vs,1) Daniel@0: u = vs(i,1); v= vs(i,2); Daniel@0: G0(u,v) = 1; G0(v,u) = 1; Daniel@0: end Daniel@0: end Daniel@0: Daniel@0: % Here is how we can discover which edges to fill in automatically Daniel@0: % (although possibly sub-optimally) Daniel@0: weights = 2*ones(1,N*N); % all nodes are binar Daniel@0: Daniel@0: % fill-ins = 2-4, 2-6, 4-8, 6-8 and 4-6 Daniel@0: % cliques = 124, etc and 2456 4568 Daniel@0: greedy_order = best_first_elim_order(G0, weights); Daniel@0: [GT, cliques, fill_ins] = triangulate(G0, greedy_order) Daniel@0: assert(check_triangulated(GT)) Daniel@0: Daniel@0: Daniel@0: Daniel@0: greedy_order = best_first_elim_order(G, weights); Daniel@0: [GT, cliques, fill_ins] = triangulate(G, greedy_order) Daniel@0: assert(check_triangulated(GT)) Daniel@0: Daniel@0: % fill-ins = [4 6] Daniel@0: Daniel@0: % Cliques are the overlapping squares [1,2,4,5], [2 3 5 6], [4 5 7 8], [5 6 8 9] Daniel@0: % and the following caused by the fill-in: [2 4 5 6], [4 5 6 8] Daniel@0: Daniel@0: % Connect the maximal cliques of the triangulate graph into a junction tree Daniel@0: [jtree, root, B, clq_weights] = cliques_to_jtree(cliques, weights); Daniel@0: Daniel@0: % In this case, all cliques have weight 2^4 = 16 Daniel@0: Daniel@0: Daniel@0: % Now consider size of max clique as a function of grid size Daniel@0: % Note: this is not necessarily the optimal triangulation Daniel@0: Daniel@0: % N 5 10 15 16 17 18 Daniel@0: % m 6 15 23 25 28 28 Daniel@0: Ns = [5 10 15 16 17 18]; Daniel@0: for i=1:length(Ns) Daniel@0: N = Ns(i) Daniel@0: G = mk_2D_lattice(N,N,4); Daniel@0: weights = 2*ones(1,N*N); % all nodes are binary Daniel@0: greedy_order = best_first_elim_order(G, weights); % slow! Daniel@0: [GT, cliques, fill_ins] = triangulate(G, greedy_order); Daniel@0: %assert(check_triangulated(GT)) Daniel@0: [jtree, root, B, clq_weights] = cliques_to_jtree(cliques, weights); Daniel@0: m(i) = log2(max(clq_weights)); Daniel@0: end Daniel@0: Daniel@0: % plot distribution of clique sizes for fixed N Daniel@0: for c=1:length(cliques) Daniel@0: l(c) = length(cliques{c}); Daniel@0: end Daniel@0: hist(l)