Daniel@0: % Do the example in fig 23.4 p479 of Cormen, Leiserson and Rivest (1994) Daniel@0: Daniel@0: u = 1; v = 2; w = 3; x = 4; y = 5; z = 6; Daniel@0: n = 6; Daniel@0: dag=zeros(n,n); Daniel@0: dag(u,[v x])=1; Daniel@0: dag(v,y)=1; Daniel@0: dag(w,[y z])=1; Daniel@0: dag(x,v)=1; Daniel@0: dag(y,x)=1; Daniel@0: dag(z,z)=1; Daniel@0: Daniel@0: [d, pre, post, cycle, f, pred] = dfs(dag, [], 1); Daniel@0: assert(isequal(d, [1 2 9 4 3 10])) Daniel@0: assert(isequal(f, [8 7 12 5 6 11]) Daniel@0: assert(cycle) Daniel@0: Daniel@0: % Now give it an undirected cyclic graph Daniel@0: G = mk_2D_lattice(2,2,0); Daniel@0: % 1 - 3 Daniel@0: % | | Daniel@0: % 2 - 4 Daniel@0: [d, pre, post, cycle, f, pred] = dfs(G, [], 0); Daniel@0: % d = [1 2 4 3] Daniel@0: assert(cycle) Daniel@0: Daniel@0: % Now break the cycle Daniel@0: G(1,2)=0; G(2,1)=0; Daniel@0: [d, pre, post, cycle, f, pred] = dfs(G, [], 0); Daniel@0: assert(~cycle)