Daniel@0: function [engine, loglik] = enter_evidence(engine, evidence, varargin) Daniel@0: % ENTER_EVIDENCE Add the specified evidence to the network (jtree) Daniel@0: % [engine, loglik] = enter_evidence(engine, evidence, ...) Daniel@0: % Daniel@0: % evidence{i} = [] if X(i) is hidden, and otherwise contains its observed value (scalar or column vector). Daniel@0: % Daniel@0: % The following optional arguments can be specified in the form of name/value pairs: Daniel@0: % [default value in brackets] Daniel@0: % Daniel@0: % soft - a cell array of soft/virtual evidence; Daniel@0: % soft{i} is a prob. distrib. over i's values, or [] [ cell(1,N) ] Daniel@0: % Daniel@0: % e.g., engine = enter_evidence(engine, ev, 'soft', soft_ev) Daniel@0: Daniel@0: bnet = bnet_from_engine(engine); Daniel@0: ns = bnet.node_sizes(:); Daniel@0: N = length(bnet.dag); Daniel@0: Daniel@0: engine.evidence = evidence; % store this for marginal_nodes with add_ev option Daniel@0: engine.maximize = 0; Daniel@0: Daniel@0: % set default params Daniel@0: exclude = []; Daniel@0: soft_evidence = cell(1,N); Daniel@0: Daniel@0: % parse optional params Daniel@0: args = varargin; Daniel@0: nargs = length(args); Daniel@0: for i=1:2:nargs Daniel@0: switch args{i}, Daniel@0: case 'soft', soft_evidence = args{i+1}; Daniel@0: case 'maximize', engine.maximize = args{i+1}; Daniel@0: otherwise, Daniel@0: error(['invalid argument name ' args{i}]); Daniel@0: end Daniel@0: end Daniel@0: Daniel@0: onodes = find(~isemptycell(evidence)); Daniel@0: hnodes = find(isemptycell(evidence)); Daniel@0: pot_type = determine_pot_type(bnet, onodes); Daniel@0: if strcmp(pot_type, 'cg') Daniel@0: check_for_cd_arcs(onodes, bnet.cnodes, bnet.dag); Daniel@0: end Daniel@0: Daniel@0: if is_mnet(bnet) Daniel@0: pot = engine.user_pot; Daniel@0: clqs = engine.nums_ass_to_user_clqs; Daniel@0: else Daniel@0: % Evaluate CPDs with evidence, and convert to potentials Daniel@0: pot = cell(1, N); Daniel@0: for n=1:N Daniel@0: fam = family(bnet.dag, n); Daniel@0: e = bnet.equiv_class(n); Daniel@0: if isempty(bnet.CPD{e}) Daniel@0: error(['must define CPD ' num2str(e)]) Daniel@0: else Daniel@0: pot{n} = convert_to_pot(bnet.CPD{e}, pot_type, fam(:), evidence); Daniel@0: end Daniel@0: end Daniel@0: clqs = engine.clq_ass_to_node(1:N); Daniel@0: end Daniel@0: Daniel@0: % soft evidence Daniel@0: soft_nodes = find(~isemptycell(soft_evidence)); Daniel@0: S = length(soft_nodes); Daniel@0: if S > 0 Daniel@0: assert(pot_type == 'd'); Daniel@0: assert(mysubset(soft_nodes, bnet.dnodes)); Daniel@0: end Daniel@0: for i=1:S Daniel@0: n = soft_nodes(i); Daniel@0: pot{end+1} = dpot(n, ns(n), soft_evidence{n}); Daniel@0: end Daniel@0: clqs = [clqs engine.clq_ass_to_node(soft_nodes)]; Daniel@0: Daniel@0: Daniel@0: [clpot, seppot] = init_pot(engine, clqs, pot, pot_type, onodes); Daniel@0: [clpot, seppot] = collect_evidence(engine, clpot, seppot); Daniel@0: [clpot, seppot] = distribute_evidence(engine, clpot, seppot); Daniel@0: Daniel@0: C = length(clpot); Daniel@0: ll = zeros(1, C); Daniel@0: for i=1:C Daniel@0: [clpot{i}, ll(i)] = normalize_pot(clpot{i}); Daniel@0: end Daniel@0: loglik = ll(1); % we can extract the likelihood from any clique Daniel@0: Daniel@0: engine.clpot = clpot;