Daniel@0: function [engine, loglik] = enter_evidence(engine, evidence, varargin) Daniel@0: % ENTER_EVIDENCE Add the specified evidence to the network (gaussian_inf_engine) Daniel@0: % [engine, loglik] = enter_evidence(engine, evidence, ...) Daniel@0: % Daniel@0: % evidence{i} = [] if if X(i) is hidden, and otherwise contains its observed value (scalar or column vector) Daniel@0: Daniel@0: bnet = bnet_from_engine(engine); Daniel@0: ns = bnet.node_sizes; Daniel@0: O = find(~isemptycell(evidence)); Daniel@0: H = find(isemptycell(evidence)); Daniel@0: vals = cat(1, evidence{O}); Daniel@0: Daniel@0: % Compute Pr(H|o) Daniel@0: [Hmu, HSigma, loglik] = condition_gaussian(engine.mu, engine.Sigma, H, O, vals(:), ns); Daniel@0: Daniel@0: engine.Hmu = Hmu; Daniel@0: engine.HSigma = HSigma; Daniel@0: engine.hnodes = H; Daniel@0: Daniel@0: %%%%%%%% Daniel@0: Daniel@0: function [mu2, Sigma2, loglik] = condition_gaussian(mu, Sigma, X, Y, y, ns) Daniel@0: % CONDITION_GAUSSIAN Compute Pr(X|Y=y) where X and Y are jointly Gaussian. Daniel@0: % [mu2, Sigma2, ll] = condition_gaussian(mu, Sigma, X, Y, y, ns) Daniel@0: Daniel@0: if isempty(y) Daniel@0: mu2 = mu; Daniel@0: Sigma2 = Sigma; Daniel@0: loglik = 0; Daniel@0: return; Daniel@0: end Daniel@0: Daniel@0: use_log = 1; Daniel@0: Daniel@0: if length(Y)==length(mu) % instantiating every variable Daniel@0: mu2 = y; Daniel@0: Sigma2 = zeros(length(y)); Daniel@0: loglik = gaussian_prob(y, mu, Sigma, use_log); Daniel@0: return; Daniel@0: end Daniel@0: Daniel@0: [muX, muY, SXX, SXY, SYX, SYY] = partition_matrix_vec(mu, Sigma, X, Y, ns); Daniel@0: K = SXY*inv(SYY); Daniel@0: mu2 = muX + K*(y-muY); Daniel@0: Sigma2 = SXX - K*SYX; Daniel@0: loglik = gaussian_prob(y, muY, SYY, use_log);