Daniel@0: function [engine, loglik] = enter_evidence(engine, evidence, varargin) Daniel@0: % ENTER_EVIDENCE Add the specified evidence to the network (kalman) Daniel@0: % [engine, loglik] = enter_evidence(engine, evidence, ...) Daniel@0: % Daniel@0: % evidence{i,t} = [] if if X(i,t) is hidden, and otherwise contains its observed value (scalar or column vector) Daniel@0: % Daniel@0: % The following optional arguments can be specified in the form of name/value pairs: Daniel@0: % [default value in brackets] Daniel@0: % Daniel@0: % maximize - if 1, does max-product (same as sum-product for Gaussians!), else sum-product [0] Daniel@0: % filter - if 1, do filtering, else smoothing [0] Daniel@0: % Daniel@0: % e.g., engine = enter_evidence(engine, ev, 'maximize', 1) Daniel@0: Daniel@0: maximize = 0; Daniel@0: filter = 0; Daniel@0: Daniel@0: % parse optional params Daniel@0: args = varargin; Daniel@0: nargs = length(args); Daniel@0: if nargs > 0 Daniel@0: for i=1:2:nargs Daniel@0: switch args{i}, Daniel@0: case 'maximize', maximize = args{i+1}; Daniel@0: case 'filter', filter = args{i+1}; Daniel@0: otherwise, Daniel@0: error(['invalid argument name ' args{i}]); Daniel@0: end Daniel@0: end Daniel@0: end Daniel@0: Daniel@0: assert(~maximize); Daniel@0: Daniel@0: bnet = bnet_from_engine(engine); Daniel@0: n = length(bnet.intra); Daniel@0: onodes = bnet.observed; Daniel@0: hnodes = mysetdiff(1:n, onodes); Daniel@0: T = size(evidence, 2); Daniel@0: ns = bnet.node_sizes; Daniel@0: O = sum(ns(onodes)); Daniel@0: data = reshape(cat(1, evidence{onodes,:}), [O T]); Daniel@0: Daniel@0: A = engine.trans_mat; Daniel@0: C = engine.obs_mat; Daniel@0: Q = engine.trans_cov; Daniel@0: R = engine.obs_cov; Daniel@0: init_x = engine.init_state; Daniel@0: init_V = engine.init_cov; Daniel@0: Daniel@0: if filter Daniel@0: [x, V, VV, loglik] = kalman_filter(data, A, C, Q, R, init_x, init_V); Daniel@0: else Daniel@0: [x, V, VV, loglik] = kalman_smoother(data, A, C, Q, R, init_x, init_V); Daniel@0: end Daniel@0: Daniel@0: Daniel@0: % Wrap the posterior inside a potential, so it can be marginalized easily Daniel@0: engine.one_slice_marginal = cell(1,T); Daniel@0: engine.two_slice_marginal = cell(1,T); Daniel@0: ns(onodes) = 0; Daniel@0: ns(onodes+n) = 0; Daniel@0: ss = length(bnet.intra); Daniel@0: for t=1:T Daniel@0: dom = (1:n); Daniel@0: engine.one_slice_marginal{t} = mpot(dom+(t-1)*ss, ns(dom), 1, x(:,t), V(:,:,t)); Daniel@0: end Daniel@0: % for t=1:T-1 Daniel@0: % dom = (1:(2*n)); Daniel@0: % mu = [x(:,t); x(:,t)]; Daniel@0: % Sigma = [V(:,:,t) VV(:,:,t+1)'; Daniel@0: % VV(:,:,t+1) V(:,:,t+1)]; Daniel@0: % engine.two_slice_marginal{t} = mpot(dom+(t-1)*ss, ns(dom), 1, mu, Sigma); Daniel@0: % end Daniel@0: for t=2:T Daniel@0: %dom = (1:(2*n)); Daniel@0: current_slice = hnodes; Daniel@0: next_slice = hnodes + ss; Daniel@0: dom = [current_slice next_slice]; Daniel@0: mu = [x(:,t-1); x(:,t)]; Daniel@0: Sigma = [V(:,:,t-1) VV(:,:,t)'; Daniel@0: VV(:,:,t) V(:,:,t)]; Daniel@0: engine.two_slice_marginal{t-1} = mpot(dom+(t-2)*ss, ns(dom), 1, mu, Sigma); Daniel@0: end