Daniel@0: function CPT2 = mk_named_CPT(family_names, names, dag, CPT1) Daniel@0: % MK_NAMED_CPT Permute the dimensions of a CPT so they agree with the internal numbering convention Daniel@0: % CPT2 = mk_named_CPT(family_names, names, dag, CPT1) Daniel@0: % Daniel@0: % This is best explained by example. Daniel@0: % Consider the following directed acyclic graph Daniel@0: % Daniel@0: % C Daniel@0: % / \ Daniel@0: % R S Daniel@0: % \ / Daniel@0: % W Daniel@0: % Daniel@0: % where all arcs point down. Daniel@0: % When we create the CPT for node W, we consider S as its first parent, and R as its Daniel@0: % second, and hence write Daniel@0: % Daniel@0: % S R W Daniel@0: % CPT1(1,1,:) = [1.0 0.0]; Daniel@0: % CPT1(2,1,:) = [0.2 0.8]; % P(W=1 | R=1, S=2) = 0.2 Daniel@0: % CPT1(1,2,:) = [0.1 0.9]; Daniel@0: % CPT1(2,2,:) = [0.01 0.99]; Daniel@0: % Daniel@0: % However, when we create the dag using mk_adj_mat, the nodes get topologically sorted, Daniel@0: % and by chance, node R preceeds node S in this ordering. Daniel@0: % Hence we should have written Daniel@0: % Daniel@0: % R S W Daniel@0: % CPT2(1,1,:) = [1.0 0.0]; Daniel@0: % CPT2(2,1,:) = [0.1 0.9]; Daniel@0: % CPT2(1,2,:) = [0.2 0.8]; % P(W=1 | R=1, S=2) = 0.2 Daniel@0: % CPT2(2,2,:) = [0.01 0.99]; Daniel@0: % Daniel@0: % Since we do not know the order of the nodes in advance, we can write Daniel@0: % CPT2 = mk_named_CPT({'S', 'R', 'W'}, names, dag, CPT1) Daniel@0: % where 'S', 'R', 'W' are the order of the dimensions we assumed (the child node must be last in this list), Daniel@0: % and names{i} is the name of the i'th node. Daniel@0: Daniel@0: n = length(family_names); Daniel@0: family_nums = zeros(1,n); Daniel@0: for i=1:n Daniel@0: family_nums(i) = stringmatch(family_names{i}, names); % was strmatch Daniel@0: end Daniel@0: Daniel@0: fam = family(dag, family_nums(end)); Daniel@0: perm = zeros(1,n); Daniel@0: for i=1:n Daniel@0: % perm(i) = find(family_nums(i) == fam); Daniel@0: perm(i) = find(fam(i) == family_nums); Daniel@0: end Daniel@0: Daniel@0: CPT2 = permute(CPT1, perm);