Daniel@0: function [data, clamped] = mk_mutilated_samples(bnet, ncases, max_clamp, usecell) Daniel@0: % GEN_MUTILATED_SAMPLES Do random interventions and then draw random samples Daniel@0: % [data, clamped] = gen_mutilated_samples(bnet, ncases, max_clamp, usecell) Daniel@0: % Daniel@0: % At each step, we pick a random subset of size 0 .. max_clamp, and Daniel@0: % clamp these nodes to random values. Daniel@0: % Daniel@0: % data(i,m) is the value of node i in case m. Daniel@0: % clamped(i,m) = 1 if node i in case m was set by intervention. Daniel@0: Daniel@0: if nargin < 4, usecell = 1; end Daniel@0: Daniel@0: ns = bnet.node_sizes; Daniel@0: n = length(bnet.dag); Daniel@0: if usecell Daniel@0: data = cell(n, ncases); Daniel@0: else Daniel@0: data = zeros(n, ncases); Daniel@0: end Daniel@0: clamped = zeros(n, ncases); Daniel@0: Daniel@0: csubsets = subsets(1:n, max_clamp, 0); % includes the empty set Daniel@0: distrib_cset = normalise(ones(1, length(csubsets))); Daniel@0: Daniel@0: for m=1:ncases Daniel@0: cset = csubsets{sample_discrete(distrib_cset)}; Daniel@0: nvals = prod(ns(cset)); Daniel@0: distrib_cvals = normalise(ones(1, nvals)); Daniel@0: cvals = ind2subv(ns(cset), sample_discrete(distrib_cvals)); Daniel@0: mutilated_bnet = do_intervention(bnet, cset, cvals); Daniel@0: ev = sample_bnet(mutilated_bnet); Daniel@0: if usecell Daniel@0: data(:,m) = ev; Daniel@0: else Daniel@0: data(:,m) = cell2num(ev); Daniel@0: end Daniel@0: clamped(cset,m) = 1; Daniel@0: end