Daniel@0: function bnet = mk_dbn(intra, inter, node_sizes, varargin) Daniel@0: % MK_DBN Make a Dynamic Bayesian Network. Daniel@0: % Daniel@0: % BNET = MK_DBN(INTRA, INTER, NODE_SIZES, ...) makes a DBN with arcs Daniel@0: % from i in slice t to j in slice t iff intra(i,j) = 1, and Daniel@0: % from i in slice t to j in slice t+1 iff inter(i,j) = 1, Daniel@0: % for i,j in {1, 2, ..., n}, where n = num. nodes per slice, and t >= 1. Daniel@0: % node_sizes(i) is the number of values node i can take on. Daniel@0: % The nodes are assumed to be in topological order. Use TOPOLOGICAL_SORT if necessary. Daniel@0: % See also mk_bnet. Daniel@0: % Daniel@0: % Optional arguments [default in brackets] Daniel@0: % 'discrete' - list of discrete nodes [1:n] Daniel@0: % 'observed' - the list of nodes which will definitely be observed in every slice of every case [ [] ] Daniel@0: % 'eclass1' - equiv class for slice 1 [1:n] Daniel@0: % 'eclass2' - equiv class for slice 2 [tie nodes with equivalent parents to slice 1] Daniel@0: % equiv_class1(i) = j means node i in slice 1 gets its parameters from bnet.CPD{j}, Daniel@0: % i.e., nodes i and j have tied parameters. Daniel@0: % 'intra1' - topology of first slice, if different from others Daniel@0: % 'names' - a cell array of strings to be associated with nodes 1:n [{}] Daniel@0: % This creates an associative array, so you write e.g. Daniel@0: % 'evidence(bnet.names{'bar'}) = 42' instead of 'evidence(2} = 42' Daniel@0: % assuming names = { 'foo', 'bar', ...}. Daniel@0: % Daniel@0: % For backwards compatibility with BNT2, arguments can also be specified as follows Daniel@0: % bnet = mk_dbn(intra, inter, node_sizes, dnodes, eclass1, eclass2, intra1) Daniel@0: % Daniel@0: % After calling this function, you must specify the parameters (conditional probability Daniel@0: % distributions) using bnet.CPD{i} = gaussian_CPD(...) or tabular_CPD(...) etc. Daniel@0: Daniel@0: Daniel@0: n = length(intra); Daniel@0: ss = n; Daniel@0: bnet.nnodes_per_slice = ss; Daniel@0: bnet.intra = intra; Daniel@0: bnet.inter = inter; Daniel@0: bnet.intra1 = intra; Daniel@0: dag = zeros(2*n); Daniel@0: dag(1:n,1:n) = bnet.intra1; Daniel@0: dag(1:n,(1:n)+n) = bnet.inter; Daniel@0: dag((1:n)+n,(1:n)+n) = bnet.intra; Daniel@0: bnet.dag = dag; Daniel@0: bnet.names = {}; Daniel@0: Daniel@0: directed = 1; Daniel@0: if ~acyclic(dag,directed) Daniel@0: error('graph must be acyclic') Daniel@0: end Daniel@0: Daniel@0: Daniel@0: bnet.eclass1 = 1:n; Daniel@0: %bnet.eclass2 = (1:n)+n; Daniel@0: bnet.eclass2 = bnet.eclass1; Daniel@0: for i=1:ss Daniel@0: if isequal(parents(dag, i+ss), parents(dag, i)+ss) Daniel@0: %fprintf('%d has isomorphic parents, eclass %d\n', i, bnet.eclass2(i)) Daniel@0: else Daniel@0: bnet.eclass2(i) = max(bnet.eclass2) + 1; Daniel@0: %fprintf('%d has non isomorphic parents, eclass %d\n', i, bnet.eclass2(i)) Daniel@0: end Daniel@0: end Daniel@0: Daniel@0: dnodes = 1:n; Daniel@0: bnet.observed = []; Daniel@0: Daniel@0: if nargin >= 4 Daniel@0: args = varargin; Daniel@0: nargs = length(args); Daniel@0: if ~isstr(args{1}) Daniel@0: if nargs >= 1, dnodes = args{1}; end Daniel@0: if nargs >= 2, bnet.eclass1 = args{2}; end Daniel@0: if nargs >= 3, bnet.eclass2 = args{3}; end Daniel@0: if nargs >= 4, bnet.intra1 = args{4}; end Daniel@0: else Daniel@0: for i=1:2:nargs Daniel@0: switch args{i}, Daniel@0: case 'discrete', dnodes = args{i+1}; Daniel@0: case 'observed', bnet.observed = args{i+1}; Daniel@0: case 'eclass1', bnet.eclass1 = args{i+1}; Daniel@0: case 'eclass2', bnet.eclass2 = args{i+1}; Daniel@0: case 'intra1', bnet.intra1 = args{i+1}; Daniel@0: %case 'ar_hmm', bnet.ar_hmm = args{i+1}; % should check topology Daniel@0: case 'names', bnet.names = assocarray(args{i+1}, num2cell(1:n)); Daniel@0: otherwise, Daniel@0: error(['invalid argument name ' args{i}]); Daniel@0: end Daniel@0: end Daniel@0: end Daniel@0: end Daniel@0: Daniel@0: Daniel@0: bnet.observed = sort(bnet.observed); % for comparing sets Daniel@0: ns = node_sizes; Daniel@0: bnet.node_sizes_slice = ns(:)'; Daniel@0: bnet.node_sizes = [ns(:) ns(:)]; Daniel@0: Daniel@0: cnodes = mysetdiff(1:n, dnodes); Daniel@0: bnet.dnodes_slice = dnodes; Daniel@0: bnet.cnodes_slice = cnodes; Daniel@0: bnet.dnodes = [dnodes dnodes+n]; Daniel@0: bnet.cnodes = [cnodes cnodes+n]; Daniel@0: Daniel@0: bnet.equiv_class = [bnet.eclass1(:) bnet.eclass2(:)]; Daniel@0: bnet.CPD = cell(1,max(bnet.equiv_class(:))); Daniel@0: eclass = bnet.equiv_class(:); Daniel@0: E = max(eclass); Daniel@0: bnet.rep_of_eclass = zeros(1,E); Daniel@0: for e=1:E Daniel@0: mems = find(eclass==e); Daniel@0: bnet.rep_of_eclass(e) = mems(1); Daniel@0: end Daniel@0: Daniel@0: ss = n; Daniel@0: onodes = bnet.observed; Daniel@0: hnodes = mysetdiff(1:ss, onodes); Daniel@0: bnet.hidden_bitv = zeros(1,2*ss); Daniel@0: bnet.hidden_bitv(hnodes) = 1; Daniel@0: bnet.hidden_bitv(hnodes+ss) = 1; Daniel@0: Daniel@0: bnet.parents = cell(1, 2*ss); Daniel@0: for i=1:ss Daniel@0: bnet.parents{i} = parents(bnet.dag, i); Daniel@0: bnet.parents{i+ss} = parents(bnet.dag, i+ss); Daniel@0: end Daniel@0: Daniel@0: bnet.auto_regressive = zeros(1,ss); Daniel@0: % ar(i)=1 means (observed) node i depends on i in the previous slice Daniel@0: for o=bnet.observed(:)' Daniel@0: if any(bnet.parents{o+ss} <= ss) Daniel@0: bnet.auto_regressive(o) = 1; Daniel@0: end Daniel@0: end Daniel@0: