Daniel@0: function gdl = mk_gdl_graph(G, domains, node_sizes, kernels, varargin) Daniel@0: % MK_GDL_GRAPH Make a GDL (generalized distributed law) graph Daniel@0: % gdl = mk_gdl_graph(G, domains, node_sizes, kernels, ...) Daniel@0: % Daniel@0: % A GDL graph is like a moralized, but untriangulated, Bayes net: Daniel@0: % each "node" represents a domain with a corresponding kernel function. Daniel@0: % For details, see "The Generalized Distributive Law", Aji and McEliece, Daniel@0: % IEEE Trans. Info. Theory, 46(2): 325--343, 2000 Daniel@0: % Daniel@0: % G(i,j) = 1 if there is an (undirected) edge between domains i,j Daniel@0: % Daniel@0: % domains{i} is the domain of node i Daniel@0: % Daniel@0: % node_sizes(i) is the number of values node i can take on, Daniel@0: % or the length of node i if i is a continuous-valued vector. Daniel@0: % node_sizes(i) = 1 if i is a utility node. Daniel@0: % Daniel@0: % kernels is the list of kernel functions Daniel@0: % Daniel@0: % The list below gives optional arguments [default value in brackets]. Daniel@0: % Daniel@0: % equiv_class - equiv_class(i)=j means factor node i gets its params from factors{j} [1:F] Daniel@0: % discrete - the list of nodes which are discrete random variables [1:N] Daniel@0: % chance - the list of nodes which are random variables [1:N] Daniel@0: % decision - the list of nodes which are decision nodes [ [] ] Daniel@0: % utility - the list of nodes which are utility nodes [ [] ] Daniel@0: Daniel@0: Daniel@0: ns = node_sizes; Daniel@0: N = length(domains); Daniel@0: vars = []; Daniel@0: for i=1:N Daniel@0: vars = myunion(vars, domains{i}); Daniel@0: end Daniel@0: Nvars = length(vars); Daniel@0: Daniel@0: gdl.equiv_class = 1:length(kernels); Daniel@0: gdl.chance_nodes = 1:Nvars; Daniel@0: gdl.utility_nodes = []; Daniel@0: gdl.decision_nodes = []; Daniel@0: gdl.dnodes = 1:Nvars; Daniel@0: Daniel@0: if nargin >= 5 Daniel@0: args = varargin; Daniel@0: nargs = length(args); Daniel@0: for i=1:2:nargs Daniel@0: switch args{i}, Daniel@0: case 'equiv_class', bnet.equiv_class = args{i+1}; Daniel@0: case 'chance', bnet.chance_nodes = args{i+1}; Daniel@0: case 'utility', bnet.utility_nodes = args{i+1}; Daniel@0: case 'decision', bnet.decision_nodes = args{i+1}; Daniel@0: case 'discrete', bnet.dnodes = args{i+1}; Daniel@0: otherwise, Daniel@0: error(['invalid argument name ' args{i}]); Daniel@0: end Daniel@0: end Daniel@0: end Daniel@0: Daniel@0: Daniel@0: gdl.G = G; Daniel@0: gdl.vars = vars; Daniel@0: gdl.doms = domains; Daniel@0: gdl.node_sizes = node_sizes; Daniel@0: gdl.cnodes = mysetdiff(vars, gdl.dnodes); Daniel@0: gdl.kernels = kernels; Daniel@0: gdl.type = 'gdl'; Daniel@0: Daniel@0: % Compute a bit vector representation of the set of domains Daniel@0: % dom_bitv(i,j) = 1 iff variable j occurs in domain i Daniel@0: gdl.dom_bitv = zeros(N, length(vars)); Daniel@0: for i=1:N Daniel@0: gdl.dom_bitv(i, domains{i}) = 1; Daniel@0: end Daniel@0: Daniel@0: % compute the interesection of the domains on either side of each edge (separating set) Daniel@0: gdl.sepset = cell(N, N); Daniel@0: gdl.nbrs = cell(1,N); Daniel@0: for i=1:N Daniel@0: nbrs = neighbors(G, i); Daniel@0: gdl.nbrs{i} = nbrs; Daniel@0: for j = nbrs(:)' Daniel@0: gdl.sepset{i,j} = myintersect(domains{i}, domains{j}); Daniel@0: end Daniel@0: end Daniel@0: Daniel@0: