Daniel@0: % Make the following network (from Jensen (1996) p84 fig 4.17) Daniel@0: % 1 Daniel@0: % / | \ Daniel@0: % 2 3 4 Daniel@0: % | | | Daniel@0: % 5 6 7 Daniel@0: % \/ \/ Daniel@0: % 8 9 Daniel@0: % where all arcs point downwards Daniel@0: Daniel@0: Daniel@0: N = 9; Daniel@0: dag = zeros(N,N); Daniel@0: dag(1,2)=1; dag(1,3)=1; dag(1,4)=1; Daniel@0: dag(2,5)=1; dag(3,6)=1; dag(4,7)=1; Daniel@0: dag(5,8)=1; dag(6,8)=1; dag(6,9)=1; dag(7,9) = 1; Daniel@0: Daniel@0: ns = [5 4 3 2 2 1 2 2 2]; % vector-valued nodes Daniel@0: %ns = ones(1,9); % scalar nodes Daniel@0: dnodes = []; Daniel@0: Daniel@0: bnet = mk_bnet(dag, ns, 'discrete', []); Daniel@0: rand('state', 0); Daniel@0: randn('state', 0); Daniel@0: for i=1:N Daniel@0: bnet.CPD{i} = gaussian_CPD(bnet, i); Daniel@0: end Daniel@0: Daniel@0: clear engine; Daniel@0: engine{1} = gaussian_inf_engine(bnet); Daniel@0: engine{2} = jtree_inf_engine(bnet); Daniel@0: Daniel@0: [err, time] = cmp_inference_static(bnet, engine); Daniel@0: Daniel@0: Nsamples = 100; Daniel@0: samples = cell(N, Nsamples); Daniel@0: for s=1:Nsamples Daniel@0: samples(:,s) = sample_bnet(bnet); Daniel@0: end Daniel@0: bnet2 = learn_params(bnet, samples);