Daniel@0: seed = 0; Daniel@0: rand('state', seed); Daniel@0: randn('state', seed); Daniel@0: Daniel@0: nrows = 3; Daniel@0: ncols = 3; Daniel@0: npixels = nrows*ncols; Daniel@0: Daniel@0: % we number pixels in transposed raster scan order (top to bottom, left to right) Daniel@0: Daniel@0: % hidden var Daniel@0: HV = reshape(1:npixels, nrows, ncols); Daniel@0: % observed var Daniel@0: OV = reshape(1:npixels, nrows, ncols) + length(HV(:)); Daniel@0: Daniel@0: % observed factor Daniel@0: OF = reshape(1:npixels, nrows, ncols); Daniel@0: % vertical edge factor VEF(i,j) is the factor for edge HV(i,j) - HV(i+1,j) Daniel@0: VEF = reshape((1:(nrows-1)*ncols), nrows-1, ncols) + length(OF(:)); Daniel@0: % horizontal edge factor HEF(i,j) is the factor for edge HV(i,j) - HV(i,j+1) Daniel@0: HEF = reshape((1:nrows*(ncols-1)), nrows, ncols-1) + length(OF(:)) + length(VEF(:)); Daniel@0: Daniel@0: nvars = length(HV(:))+length(OV(:)); Daniel@0: assert(nvars == 2*npixels); Daniel@0: nfac = length(OF(:)) + length(VEF(:)) + length(HEF(:)); Daniel@0: Daniel@0: K = 2; % number of discrete values for the hidden vars Daniel@0: %O = 1; % each observed pixel is a scalar Daniel@0: O = 2; % each observed pixel is binary Daniel@0: Daniel@0: factors = cell(1,3); Daniel@0: Daniel@0: % hidden states generate observed 0 or 1 plus noise Daniel@0: %factors{2} = cond_gauss1_kernel(K, O, 'mean', [0 1], 'cov', [0.1 0.1]); Daniel@0: pnoise = 0.2; Daniel@0: factors{1} = tabular_kernel([K O], [1-pnoise pnoise; pnoise 1-pnoise]); Daniel@0: ofactor = 1; Daniel@0: Daniel@0: % encourage compatibility between neighboring vertical pixels Daniel@0: factors{2} = tabular_kernel([K K], [0.8 0.2; 0.2 0.8]); Daniel@0: vedge_factor = 2; Daniel@0: Daniel@0: %% no constraint between neighboring horizontal pixels Daniel@0: %factors{3} = tabular_kernel([K K], [0.5 0.5; 0.5 0.5]); Daniel@0: Daniel@0: factors{3} = tabular_kernel([K K], [0.8 0.2; 0.2 0.8]); Daniel@0: hedge_factor = 3; Daniel@0: Daniel@0: Daniel@0: Daniel@0: factor_ndx = zeros(1, 3); Daniel@0: G = zeros(nvars, nfac); Daniel@0: ns = [K*ones(1,length(HV(:))) O*ones(1,length(OV(:)))]; Daniel@0: Daniel@0: N = length(ns); Daniel@0: %cnodes = OV(:); Daniel@0: cnodes = []; Daniel@0: dnodes = 1:N; Daniel@0: Daniel@0: for i=1:nrows Daniel@0: for j=1:ncols Daniel@0: G([HV(i,j), OV(i,j)], OF(i,j)) = 1; Daniel@0: factor_ndx(OF(i,j)) = ofactor; Daniel@0: Daniel@0: if i < nrows Daniel@0: G(HV(i:i+1,j), VEF(i,j)) = 1; Daniel@0: factor_ndx(VEF(i,j)) = vedge_factor; Daniel@0: end Daniel@0: Daniel@0: if j < ncols Daniel@0: G(HV(i,j:j+1), HEF(i,j)) = 1; Daniel@0: factor_ndx(HEF(i,j)) = hedge_factor; Daniel@0: end Daniel@0: Daniel@0: end Daniel@0: end Daniel@0: Daniel@0: Daniel@0: fg = mk_fgraph(G, ns, factors, 'discrete', dnodes, 'equiv_class', factor_ndx); Daniel@0: Daniel@0: if 1 Daniel@0: % make image with vertical stripes Daniel@0: I = zeros(nrows, ncols); Daniel@0: for j=1:2:ncols Daniel@0: I(:,j) = 1; Daniel@0: end Daniel@0: else Daniel@0: % make image with square in middle Daniel@0: I = zeros(nrows, ncols); Daniel@0: I(3:6,3:6) = 1; Daniel@0: end Daniel@0: Daniel@0: Daniel@0: % corrupt image Daniel@0: O = mod(I + (rand(nrows,ncols)> (1-pnoise)), 2); Daniel@0: Daniel@0: maximize = 1; Daniel@0: engine = belprop_fg_inf_engine(fg, 'maximize', maximize, 'max_iter', npixels*5); Daniel@0: Daniel@0: evidence = cell(1, nvars); Daniel@0: onodes = OV(:); Daniel@0: evidence(onodes) = num2cell(O+1); % values must be in range {1,2} Daniel@0: Daniel@0: engine = enter_evidence(engine, evidence); Daniel@0: Daniel@0: for i=1:nrows Daniel@0: for j=1:ncols Daniel@0: m = marginal_nodes(engine, HV(i,j)); Daniel@0: Ihat(i,j) = argmax(m.T)-1; Daniel@0: end Daniel@0: end Daniel@0: Daniel@0: Ihat