Daniel@0: % Compare various inference engines on the following network (from Jensen (1996) p84 fig 4.17) Daniel@0: % 1 Daniel@0: % / | \ Daniel@0: % 2 3 4 Daniel@0: % | | | Daniel@0: % 5 6 7 Daniel@0: % \/ \/ Daniel@0: % 8 9 Daniel@0: % where all arcs point downwards Daniel@0: Daniel@0: N = 9; Daniel@0: dag = zeros(N,N); Daniel@0: dag(1,2)=1; dag(1,3)=1; dag(1,4)=1; Daniel@0: dag(2,5)=1; dag(3,6)=1; dag(4,7)=1; Daniel@0: dag(5,8)=1; dag(6,8)=1; dag(6,9)=1; dag(7,9) = 1; Daniel@0: Daniel@0: dnodes = 1:N; Daniel@0: false = 1; true = 2; Daniel@0: ns = 2*ones(1,N); % binary nodes Daniel@0: Daniel@0: onodes = [1]; Daniel@0: evidence = cell(1,N); Daniel@0: evidence(onodes) = num2cell(1); Daniel@0: bnet = mk_bnet(dag, ns, 'observed', onodes); Daniel@0: % use random params Daniel@0: %for i=1:N Daniel@0: % bnet.CPD{i} = tabular_CPD(bnet, i); Daniel@0: %end Daniel@0: bnet.CPD{1} = tabular_CPD(bnet, 1, 'sparse', 1, 'CPT', [0.8, 0.2]); Daniel@0: bnet.CPD{2} = tabular_CPD(bnet, 2, 'sparse', 1, 'CPT', [1 0 0 1]); Daniel@0: bnet.CPD{3} = tabular_CPD(bnet, 3, 'sparse', 1, 'CPT', [0 1 1 0]); Daniel@0: bnet.CPD{4} = tabular_CPD(bnet, 4, 'sparse', 1, 'CPT', [1 1 0 0]); Daniel@0: bnet.CPD{5} = tabular_CPD(bnet, 5, 'sparse', 1, 'CPT', [0 0 1 1]); Daniel@0: bnet.CPD{6} = tabular_CPD(bnet, 6, 'sparse', 1, 'CPT', [1 0 0 1]); Daniel@0: bnet.CPD{7} = tabular_CPD(bnet, 7, 'sparse', 1, 'CPT', [0 1 1 0]); Daniel@0: bnet.CPD{8} = tabular_CPD(bnet, 8, 'sparse', 1, 'CPT', [1 1 0 0 0 0 1 1]); Daniel@0: bnet.CPD{9} = tabular_CPD(bnet, 9, 'sparse', 1, 'CPT', [0 1 0 1 1 0 1 0]); Daniel@0: Daniel@0: engine = jtree_sparse_inf_engine(bnet); Daniel@0: tic Daniel@0: [engine, ll] = enter_evidence(engine, evidence); Daniel@0: toc Daniel@0: