Daniel@0: % This example is from Page.143 of "Probabilistic Networks and Expert Systems", Daniel@0: % Cowell, Dawid, Lauritzen and Spiegelhalter, 1999, Springer. Daniel@0: Daniel@0: X = 1; Y = 2; Z = 3; Daniel@0: n = 3; Daniel@0: Daniel@0: dag = zeros(n); Daniel@0: dag(X, Y)=1; Daniel@0: dag(Y, Z)=1; Daniel@0: Daniel@0: ns = ones(1, n); Daniel@0: dnodes = []; Daniel@0: Daniel@0: bnet = mk_bnet(dag, ns, dnodes); Daniel@0: bnet.CPD{X} = gaussian_CPD(bnet, X, 'mean', 0, 'cov', 1); Daniel@0: bnet.CPD{Y} = gaussian_CPD(bnet, Y, 'mean', 0, 'cov', 1, 'weights', 1); Daniel@0: bnet.CPD{Z} = gaussian_CPD(bnet, Z, 'mean', 0, 'cov', 1, 'weights', 1); Daniel@0: Daniel@0: engines = {}; Daniel@0: engines{end+1} = jtree_inf_engine(bnet); Daniel@0: engines{end+1} = stab_cond_gauss_inf_engine(bnet); Daniel@0: nengines = length(engines); Daniel@0: Daniel@0: evidence = cell(1,n); Daniel@0: evidence{Y} = 1.5; Daniel@0: Daniel@0: for e=1:nengines Daniel@0: engines{e} = enter_evidence(engines{e}, evidence); Daniel@0: margX = marginal_nodes(engines{e}, X); Daniel@0: assert(approxeq(margX.mu, 0.75)) Daniel@0: assert(approxeq(margX.Sigma, 0.5)) Daniel@0: Daniel@0: margZ = marginal_nodes(engines{e}, Z); Daniel@0: assert(approxeq(margZ.mu, 1.5)) Daniel@0: assert(approxeq(margZ.Sigma, 1)) Daniel@0: end Daniel@0: Daniel@0: Daniel@0: evidence = cell(1,n); Daniel@0: evidence{Z} = 1.5; Daniel@0: Daniel@0: for e=1:nengines Daniel@0: engines{e} = enter_evidence(engines{e}, evidence); Daniel@0: margX = marginal_nodes(engines{e}, X); Daniel@0: assert(approxeq(margX.mu, 1/2)) Daniel@0: assert(approxeq(margX.Sigma, 2/3)) Daniel@0: Daniel@0: margY = marginal_nodes(engines{e}, Y); Daniel@0: assert(approxeq(margY.mu, 1)) Daniel@0: assert(approxeq(margY.Sigma, 2/3)) Daniel@0: end Daniel@0: