Daniel@0: % Compare various inference engines on the following network (from Jensen (1996) p84 fig 4.17) Daniel@0: % 1 Daniel@0: % / | \ Daniel@0: % 2 3 4 Daniel@0: % | | | Daniel@0: % 5 6 7 Daniel@0: % \/ \/ Daniel@0: % 8 9 Daniel@0: % where all arcs point downwards Daniel@0: Daniel@0: N = 9; Daniel@0: dag = zeros(N,N); Daniel@0: dag(1,2)=1; dag(1,3)=1; dag(1,4)=1; Daniel@0: dag(2,5)=1; dag(3,6)=1; dag(4,7)=1; Daniel@0: dag(5,8)=1; dag(6,8)=1; dag(6,9)=1; dag(7,9) = 1; Daniel@0: Daniel@0: gauss = 1; Daniel@0: if gauss Daniel@0: ns = ones(1,N); % scalar nodes Daniel@0: ns(1) = 2; Daniel@0: ns(9) = 3; Daniel@0: dnodes = []; Daniel@0: else Daniel@0: ns = 2*ones(1,N); % binary nodes Daniel@0: dnodes = 1:N; Daniel@0: end Daniel@0: Daniel@0: bnet = mk_bnet(dag, ns, 'discrete', dnodes); Daniel@0: % use random params Daniel@0: for i=1:N Daniel@0: if gauss Daniel@0: bnet.CPD{i} = gaussian_CPD(bnet, i); Daniel@0: else Daniel@0: bnet.CPD{i} = tabular_CPD(bnet, i); Daniel@0: end Daniel@0: end Daniel@0: Daniel@0: engines = {}; Daniel@0: engines{1} = jtree_inf_engine(bnet); Daniel@0: engines{2} = stab_cond_gauss_inf_engine(bnet); Daniel@0: Daniel@0: [err, time] = cmp_inference_static(bnet, engines);