Daniel@0: function [bnet, vals] = mk_minimal_qmr_bnet(G, inhibit, leak, prior, pos, neg, pos_only) Daniel@0: % MK_MINIMAL_QMR_BNET Make a QMR model which only contains the observed findings Daniel@0: % [bnet, vals] = mk_minimal_qmr_bnet(G, inhibit, prior, leak, pos, neg) Daniel@0: % Daniel@0: % Input: Daniel@0: % G(i,j) = 1 iff there is an arc from disease i to finding j Daniel@0: % inhibit(i,j) = inhibition probability on i->j arc Daniel@0: % leak(j) = inhibition prob. on leak->j arc Daniel@0: % prior(i) = prob. disease i is on Daniel@0: % pos = list of leaves that have positive observations Daniel@0: % neg = list of leaves that have negative observations Daniel@0: % pos_only = 1 means only include positively observed leaves in the model - the negative Daniel@0: % ones are absorbed into the prior terms Daniel@0: % Daniel@0: % Output: Daniel@0: % bnet Daniel@0: % vals is their value Daniel@0: Daniel@0: if pos_only Daniel@0: obs = pos; Daniel@0: else Daniel@0: obs = myunion(pos, neg); Daniel@0: end Daniel@0: Nfindings = length(obs); Daniel@0: [Ndiseases maxNfindings] = size(inhibit); Daniel@0: N = Ndiseases + Nfindings; Daniel@0: finding_node = Ndiseases+1:N; Daniel@0: Daniel@0: % j = finding_node(i) means the i'th finding node is the j'th node in the bnet Daniel@0: % k = obs(i) means the i'th observed (positive) finding is the k'th finding overall Daniel@0: % If all findings are observed, and posonly = 0, we have i = obs(i) for all i. Daniel@0: Daniel@0: %dag = sparse(N, N); Daniel@0: dag = zeros(N, N); Daniel@0: dag(1:Ndiseases, Ndiseases+1:N) = G(:,obs); Daniel@0: Daniel@0: ns = 2*ones(1,N); Daniel@0: bnet = mk_bnet(dag, ns, 'observed', finding_node); Daniel@0: Daniel@0: CPT = cell(1, Ndiseases); Daniel@0: for d=1:Ndiseases Daniel@0: CPT{d} = [1-prior(d) prior(d)]; Daniel@0: end Daniel@0: Daniel@0: if pos_only Daniel@0: % Fold in the negative evidence into the prior Daniel@0: for i=1:length(neg) Daniel@0: n = neg(i); Daniel@0: ps = parents(G,n); Daniel@0: for pi=1:length(ps) Daniel@0: p = ps(pi); Daniel@0: q = inhibit(p,n); Daniel@0: CPT{p} = CPT{p} .* [1 q]; Daniel@0: end Daniel@0: % Arbitrarily attach the leak term to the first parent Daniel@0: p = ps(1); Daniel@0: q = leak(n); Daniel@0: CPT{p} = CPT{p} .* [q q]; Daniel@0: end Daniel@0: end Daniel@0: Daniel@0: for d=1:Ndiseases Daniel@0: bnet.CPD{d} = tabular_CPD(bnet, d, CPT{d}'); Daniel@0: end Daniel@0: Daniel@0: for i=1:Nfindings Daniel@0: fnode = finding_node(i); Daniel@0: fid = obs(i); Daniel@0: ps = parents(G, fid); Daniel@0: bnet.CPD{fnode} = noisyor_CPD(bnet, fnode, leak(fid), inhibit(ps, fid)); Daniel@0: end Daniel@0: Daniel@0: obs_nodes = finding_node; Daniel@0: vals = sparse(1, maxNfindings); Daniel@0: vals(pos) = 2; Daniel@0: vals(neg) = 1; Daniel@0: vals = full(vals(obs)); Daniel@0: Daniel@0: Daniel@0: Daniel@0: Daniel@0: