Daniel@0: % oil wildcatter influence diagram in Cowell et al p172 Daniel@0: Daniel@0: % T = test for oil? Daniel@0: % UT = utility (negative cost) of testing Daniel@0: % O = amount of oil = Dry, Wet or Soaking Daniel@0: % R = results of test = NoStrucure, OpenStructure, ClosedStructure or NoResult Daniel@0: % D = drill? Daniel@0: % UD = utility of drilling Daniel@0: Daniel@0: % Decision sequence = T R D O Daniel@0: Daniel@0: T = 1; UT = 2; O = 3; R = 4; D = 5; UD = 6; Daniel@0: N = 6; Daniel@0: dag = zeros(N); Daniel@0: dag(T, [UT R D]) = 1; Daniel@0: dag(O, [R UD]) = 1; Daniel@0: dag(R, D) = 1; Daniel@0: dag(D, UD) = 1; Daniel@0: Daniel@0: ns = zeros(1,N); Daniel@0: ns(O) = 3; ns(R) = 4; ns(T) = 2; ns(D) = 2; ns(UT) = 1; ns(UD) = 1; Daniel@0: Daniel@0: limid = mk_limid(dag, ns, 'chance', [O R], 'decision', [T D], 'utility', [UT UD]); Daniel@0: Daniel@0: limid.CPD{O} = tabular_CPD(limid, O, [0.5 0.3 0.2]); Daniel@0: tbl = [0.6 0 0.3 0 0.1 0 0.3 0 0.4 0 0.4 0 0.1 0 0.3 0 0.5 0 0 1 0 1 0 1]; Daniel@0: limid.CPD{R} = tabular_CPD(limid, R, tbl); Daniel@0: Daniel@0: limid.CPD{UT} = tabular_utility_node(limid, UT, [-10 0]); Daniel@0: limid.CPD{UD} = tabular_utility_node(limid, UD, [-70 50 200 0 0 0]); Daniel@0: Daniel@0: if 1 Daniel@0: % start with uniform policies Daniel@0: limid.CPD{T} = tabular_decision_node(limid, T); Daniel@0: limid.CPD{D} = tabular_decision_node(limid, D); Daniel@0: else Daniel@0: % hard code optimal policies Daniel@0: limid.CPD{T} = tabular_decision_node(limid, T, [1.0 0.0]); Daniel@0: a = 0.5; b = 1-a; % arbitrary value Daniel@0: tbl = myreshape([0 a 1 a 1 a a a 1 b 0 b 0 b b b], ns([T R D])); Daniel@0: limid.CPD{D} = tabular_decision_node(limid, D, tbl); Daniel@0: end Daniel@0: Daniel@0: %fname = '/home/cs/murphyk/matlab/Misc/loopybel.txt'; Daniel@0: Daniel@0: engines = {}; Daniel@0: engines{end+1} = global_joint_inf_engine(limid); Daniel@0: engines{end+1} = jtree_limid_inf_engine(limid); Daniel@0: %engines{end+1} = belprop_inf_engine(limid, 'max_iter', 3*N, 'filename', fname); Daniel@0: Daniel@0: exact = [1 2]; Daniel@0: %approx = 3; Daniel@0: approx = []; Daniel@0: Daniel@0: E = length(engines); Daniel@0: strategy = cell(1, E); Daniel@0: MEU = zeros(1, E); Daniel@0: for e=1:E Daniel@0: [strategy{e}, MEU(e)] = solve_limid(engines{e}); Daniel@0: MEU Daniel@0: end Daniel@0: MEU Daniel@0: Daniel@0: for e=exact(:)' Daniel@0: assert(approxeq(MEU(e), 22.5)) Daniel@0: % U(T=yes) U(T=no) Daniel@0: % 1 0 Daniel@0: assert(argmax(strategy{e}{T}) == 1); % test = yes Daniel@0: t = 1; % test = yes Daniel@0: % strategy{D} T R U(D=yes=1) U(D=no=2) Daniel@0: % 1=yes 1=noS 0 1 Don't drill Daniel@0: % 2=no 1=noS 1 0 Daniel@0: % 1=yes 2=opS 1 0 Daniel@0: % 2=no 2=opS 1 0 Daniel@0: % 1=yes 3=clS 1 0 Daniel@0: % 2=no 3=clS 1 0 Daniel@0: % 1=yes 4=unk 1 0 Daniel@0: % 2=no 4=unk 1 0 Daniel@0: Daniel@0: for r=[2 3] % OpS, ClS Daniel@0: assert(argmax(squeeze(strategy{e}{D}(t,r,:))) == 1); % drill = yes Daniel@0: end Daniel@0: r = 1; % noS Daniel@0: assert(argmax(squeeze(strategy{e}{D}(t,r,:))) == 2); % drill = no Daniel@0: end Daniel@0: Daniel@0: Daniel@0: for e=approx(:)' Daniel@0: approxeq(strategy{exact(1)}{T}, strategy{e}{T}) Daniel@0: approxeq(strategy{exact(1)}{D}, strategy{e}{D}) Daniel@0: end