Daniel@0: function bnet = mk_chmm(N, Q, Y, discrete_obs, coupled, CPD) Daniel@0: % MK_CHMM Make a coupled Hidden Markov Model Daniel@0: % Daniel@0: % There are N hidden nodes, each connected to itself and its two nearest neighbors in the next Daniel@0: % slice (apart from the edges, where there is 1 nearest neighbor). Daniel@0: % Daniel@0: % Example: If N = 3, the hidden backbone is as follows, where all arrows point to the righ+t Daniel@0: % Daniel@0: % X1--X2 Daniel@0: % \/ Daniel@0: % /\ Daniel@0: % X2--X2 Daniel@0: % \/ Daniel@0: % /\ Daniel@0: % X3--X3 Daniel@0: % Daniel@0: % Each hidden node has a "private" observed child (not shown). Daniel@0: % Daniel@0: % BNET = MK_CHMM(N, Q, Y) Daniel@0: % Each hidden node is discrete and has Q values. Daniel@0: % Each observed node is a Gaussian vector of length Y. Daniel@0: % Daniel@0: % BNET = MK_CHMM(N, Q, Y, DISCRETE_OBS) Daniel@0: % If discrete_obs = 1, the observations are discrete (values in {1, .., Y}). Daniel@0: % Daniel@0: % BNET = MK_CHMM(N, Q, Y, DISCRETE_OBS, COUPLED) Daniel@0: % If coupled = 0, the chains are not coupled, i.e., we make N parallel HMMs. Daniel@0: % Daniel@0: % BNET = MK_CHMM(N, Q, Y, DISCRETE_OBS, COUPLED, CPDs) Daniel@0: % means use the specified CPD structures instead of creating random params. Daniel@0: % CPD{i}.CPT, i=1:N specifies the prior Daniel@0: % CPD{i}.CPT, i=2N+1:3N specifies the transition model Daniel@0: % CPD{i}.mean, CPD{i}.cov, i=N+1:2N specifies the observation model if Gaussian Daniel@0: % CPD{i}.CPT, i=N+1:2N if discrete Daniel@0: Daniel@0: Daniel@0: if nargin < 2, Q = 2; end Daniel@0: if nargin < 3, Y = 1; end Daniel@0: if nargin < 4, discrete_obs = 0; end Daniel@0: if nargin < 5, coupled = 1; end Daniel@0: if nargin < 6, rnd = 1; else rnd = 0; end Daniel@0: Daniel@0: ss = N*2; Daniel@0: hnodes = 1:N; Daniel@0: onodes = (1:N)+N; Daniel@0: Daniel@0: intra = zeros(ss); Daniel@0: for i=1:N Daniel@0: intra(hnodes(i), onodes(i))=1; Daniel@0: end Daniel@0: Daniel@0: inter = zeros(ss); Daniel@0: if coupled Daniel@0: for i=1:N Daniel@0: inter(i, max(i-1,1):min(i+1,N))=1; Daniel@0: end Daniel@0: else Daniel@0: inter(1:N, 1:N) = eye(N); Daniel@0: end Daniel@0: Daniel@0: ns = [Q*ones(1,N) Y*ones(1,N)]; Daniel@0: Daniel@0: eclass1 = [hnodes onodes]; Daniel@0: eclass2 = [hnodes+ss onodes]; Daniel@0: if discrete_obs Daniel@0: dnodes = 1:ss; Daniel@0: else Daniel@0: dnodes = hnodes; Daniel@0: end Daniel@0: bnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', eclass1, 'eclass2', eclass2, ... Daniel@0: 'observed', onodes); Daniel@0: Daniel@0: if rnd Daniel@0: for i=hnodes(:)' Daniel@0: bnet.CPD{i} = tabular_CPD(bnet, i); Daniel@0: end Daniel@0: for i=onodes(:)' Daniel@0: if discrete_obs Daniel@0: bnet.CPD{i} = tabular_CPD(bnet, i); Daniel@0: else Daniel@0: bnet.CPD{i} = gaussian_CPD(bnet, i); Daniel@0: end Daniel@0: end Daniel@0: for i=hnodes(:)'+ss Daniel@0: bnet.CPD{i} = tabular_CPD(bnet, i); Daniel@0: end Daniel@0: else Daniel@0: for i=hnodes(:)' Daniel@0: bnet.CPD{i} = tabular_CPD(bnet, i, CPD{i}.CPT); Daniel@0: end Daniel@0: for i=onodes(:)' Daniel@0: if discrete_obs Daniel@0: bnet.CPD{i} = tabular_CPD(bnet, i, CPD{i}.CPT); Daniel@0: else Daniel@0: bnet.CPD{i} = gaussian_CPD(bnet, i, CPD{i}.mean, CPD{i}.cov); Daniel@0: end Daniel@0: end Daniel@0: for i=hnodes(:)'+ss Daniel@0: bnet.CPD{i} = tabular_CPD(bnet, i, CPD{i}.CPT); Daniel@0: end Daniel@0: end Daniel@0: Daniel@0: