Daniel@0: function [A,B,C,Q,R,Qbig,Rbig,init_x,init_V,robot_block,landmark_block,... Daniel@0: true_landmark_pos, true_robot_pos, true_data_assoc, ... Daniel@0: obs_rel_pos, ctrl_signal] = mk_linear_slam(varargin) Daniel@0: Daniel@0: % We create data from a linear system for testing SLAM algorithms. Daniel@0: % i.e. , new robot pos = old robot pos + ctrl_signal, which is just a displacement vector. Daniel@0: % and observation = landmark_pos - robot_pos, which is just a displacement vector. Daniel@0: % Daniel@0: % The behavior is determined by the following optional arguments: Daniel@0: % Daniel@0: % 'nlandmarks' - num. landmarks Daniel@0: % 'landmarks' - 'rnd' means random locations in the unit sqyare Daniel@0: % 'square' means at [1 1], [4 1], [4 4] and [1 4] Daniel@0: % 'T' - num steps to run Daniel@0: % 'ctrl' - 'stationary' means the robot remains at [0 0], Daniel@0: % 'leftright' means the robot receives a constant contol of [1 0], Daniel@0: % 'square' means we navigate the robot around the square Daniel@0: % 'data-assoc' - 'rnd' means we observe landmarks at random Daniel@0: % 'nn' means we observe the nearest neighbor landmark Daniel@0: % 'cycle' means we observe landmarks in order 1,2,.., 1, 2, ... Daniel@0: Daniel@0: args = varargin; Daniel@0: % get mandatory params Daniel@0: for i=1:2:length(args) Daniel@0: switch args{i}, Daniel@0: case 'nlandmarks', nlandmarks = args{i+1}; Daniel@0: case 'T', T = args{i+1}; Daniel@0: end Daniel@0: end Daniel@0: Daniel@0: % set defaults Daniel@0: true_landmark_pos = rand(2,nlandmarks); Daniel@0: true_data_assoc = []; Daniel@0: Daniel@0: % get args Daniel@0: for i=1:2:length(args) Daniel@0: switch args{i}, Daniel@0: case 'landmarks', Daniel@0: switch args{i+1}, Daniel@0: case 'rnd', true_landmark_pos = rand(2,nlandmarks); Daniel@0: case 'square', true_landmark_pos = [1 1; 4 1; 4 4; 1 4]'; Daniel@0: end Daniel@0: case 'ctrl', Daniel@0: switch args{i+1}, Daniel@0: case 'stationary', ctrl_signal = repmat([0 0]', 1, T); Daniel@0: case 'leftright', ctrl_signal = repmat([1 0]', 1, T); Daniel@0: case 'square', ctrl_signal = [repmat([1 0]', 1, T/4) repmat([0 1]', 1, T/4) ... Daniel@0: repmat([-1 0]', 1, T/4) repmat([0 -1]', 1, T/4)]; Daniel@0: end Daniel@0: case 'data-assoc', Daniel@0: switch args{i+1}, Daniel@0: case 'rnd', true_data_assoc = sample_discrete(normalise(ones(1,nlandmarks)),1,T); Daniel@0: case 'cycle', true_data_assoc = wrap(1:T, nlandmarks); Daniel@0: end Daniel@0: end Daniel@0: end Daniel@0: if isempty(true_data_assoc) Daniel@0: use_nn = 1; Daniel@0: else Daniel@0: use_nn = 0; Daniel@0: end Daniel@0: Daniel@0: %%%%%%%%%%%%%%%%%%%%%%%% Daniel@0: % generate data Daniel@0: Daniel@0: init_robot_pos = [0 0]'; Daniel@0: true_robot_pos = zeros(2, T); Daniel@0: true_rel_dist = zeros(2, T); Daniel@0: for t=1:T Daniel@0: if t>1 Daniel@0: true_robot_pos(:,t) = true_robot_pos(:,t-1) + ctrl_signal(:,t); Daniel@0: else Daniel@0: true_robot_pos(:,t) = init_robot_pos + ctrl_signal(:,t); Daniel@0: end Daniel@0: nn = argmin(dist2(true_robot_pos(:,t)', true_landmark_pos')); Daniel@0: if use_nn Daniel@0: true_data_assoc(t) = nn; Daniel@0: end Daniel@0: true_rel_dist(:,t) = true_landmark_pos(:, nn) - true_robot_pos(:,t); Daniel@0: end Daniel@0: Daniel@0: Daniel@0: R = 1e-3*eye(2); % noise added to observation Daniel@0: Q = 1e-3*eye(2); % noise added to robot motion Daniel@0: Daniel@0: % Create data set Daniel@0: obs_noise_seq = sample_gaussian([0 0]', R, T)'; Daniel@0: obs_rel_pos = true_rel_dist + obs_noise_seq; Daniel@0: %obs_rel_pos = true_rel_dist; Daniel@0: Daniel@0: %%%%%%%%%%%%%%%%%% Daniel@0: % Create params Daniel@0: Daniel@0: Daniel@0: % X(t) = A X(t-1) + B U(t) + noise(Q) Daniel@0: Daniel@0: % [L1] = [1 ] * [L1] + [0] * Ut + [0 ] Daniel@0: % [L2] [ 1 ] [L2] [0] [ 0 ] Daniel@0: % [R ]t [ 1] [R ]t-1 [1] [ Q] Daniel@0: Daniel@0: % Y(t)|S(t)=s = C(s) X(t) + noise(R) Daniel@0: % Yt|St=1 = [1 0 -1] * [L1] + R Daniel@0: % [L2] Daniel@0: % [R ] Daniel@0: Daniel@0: % Create indices into block structure Daniel@0: bs = 2*ones(1, nlandmarks+1); % sizes of blocks in state space Daniel@0: robot_block = block(nlandmarks+1, bs); Daniel@0: for i=1:nlandmarks Daniel@0: landmark_block(:,i) = block(i, bs)'; Daniel@0: end Daniel@0: Xsz = 2*(nlandmarks+1); % 2 values for each landmark plus robot Daniel@0: Ysz = 2; % observe relative location Daniel@0: Usz = 2; % input is (dx, dy) Daniel@0: Daniel@0: Daniel@0: % create block-diagonal trans matrix for each switch Daniel@0: A = zeros(Xsz, Xsz); Daniel@0: for i=1:nlandmarks Daniel@0: bi = landmark_block(:,i); Daniel@0: A(bi, bi) = eye(2); Daniel@0: end Daniel@0: bi = robot_block; Daniel@0: A(bi, bi) = eye(2); Daniel@0: A = repmat(A, [1 1 nlandmarks]); % same for all switch values Daniel@0: Daniel@0: % create block-diagonal system cov Daniel@0: Daniel@0: Daniel@0: Qbig = zeros(Xsz, Xsz); Daniel@0: bi = robot_block; Daniel@0: Qbig(bi,bi) = Q; % only add noise to robot motion Daniel@0: Qbig = repmat(Qbig, [1 1 nlandmarks]); Daniel@0: Daniel@0: % create input matrix Daniel@0: B = zeros(Xsz, Usz); Daniel@0: B(robot_block,:) = eye(2); % only add input to robot position Daniel@0: B = repmat(B, [1 1 nlandmarks]); Daniel@0: Daniel@0: % create observation matrix for each value of the switch node Daniel@0: % C(:,:,i) = (0 ... I ... -I) where the I is in the i'th posn. Daniel@0: % This computes L(i) - R Daniel@0: C = zeros(Ysz, Xsz, nlandmarks); Daniel@0: for i=1:nlandmarks Daniel@0: C(:, landmark_block(:,i), i) = eye(2); Daniel@0: C(:, robot_block, i) = -eye(2); Daniel@0: end Daniel@0: Daniel@0: % create observation cov for each value of the switch node Daniel@0: Rbig = repmat(R, [1 1 nlandmarks]); Daniel@0: Daniel@0: % initial conditions Daniel@0: init_x = zeros(Xsz, 1); Daniel@0: init_v = zeros(Xsz, Xsz); Daniel@0: bi = robot_block; Daniel@0: init_x(bi) = init_robot_pos; Daniel@0: %init_V(bi, bi) = 1e-5*eye(2); % very sure of robot posn Daniel@0: init_V(bi, bi) = Q; % simualate uncertainty due to 1 motion step Daniel@0: for i=1:nlandmarks Daniel@0: bi = landmark_block(:,i); Daniel@0: init_V(bi,bi)= 1e5*eye(2); % very uncertain of landmark psosns Daniel@0: %init_x(bi) = true_landmark_pos(:,i); Daniel@0: %init_V(bi,bi)= 1e-5*eye(2); % very sure of landmark psosns Daniel@0: end