Daniel@0: % We navigate a robot around a square using a fixed control policy and no noise. Daniel@0: % We assume the robot observes the relative distance to the nearest landmark. Daniel@0: % Everything is linear-Gaussian. Daniel@0: Daniel@0: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Daniel@0: % Create toy data set Daniel@0: Daniel@0: seed = 0; Daniel@0: rand('state', seed); Daniel@0: randn('state', seed); Daniel@0: Daniel@0: if 1 Daniel@0: T = 20; Daniel@0: ctrl_signal = [repmat([1 0]', 1, T/4) repmat([0 1]', 1, T/4) ... Daniel@0: repmat([-1 0]', 1, T/4) repmat([0 -1]', 1, T/4)]; Daniel@0: else Daniel@0: T = 5; Daniel@0: ctrl_signal = repmat([1 0]', 1, T); Daniel@0: end Daniel@0: Daniel@0: nlandmarks = 4; Daniel@0: true_landmark_pos = [1 1; Daniel@0: 4 1; Daniel@0: 4 4; Daniel@0: 1 4]'; Daniel@0: init_robot_pos = [0 0]'; Daniel@0: Daniel@0: true_robot_pos = zeros(2, T); Daniel@0: true_data_assoc = zeros(1, T); Daniel@0: true_rel_dist = zeros(2, T); Daniel@0: for t=1:T Daniel@0: if t>1 Daniel@0: true_robot_pos(:,t) = true_robot_pos(:,t-1) + ctrl_signal(:,t); Daniel@0: else Daniel@0: true_robot_pos(:,t) = init_robot_pos + ctrl_signal(:,t); Daniel@0: end Daniel@0: nn = argmin(dist2(true_robot_pos(:,t)', true_landmark_pos')); Daniel@0: %nn = t; % observe 1, 2, 3 Daniel@0: true_data_assoc(t) = nn; Daniel@0: true_rel_dist(:,t) = true_landmark_pos(:, nn) - true_robot_pos(:,t); Daniel@0: end Daniel@0: Daniel@0: figure(1); Daniel@0: %clf; Daniel@0: hold on Daniel@0: %plot(true_landmark_pos(1,:), true_landmark_pos(2,:), '*'); Daniel@0: for i=1:nlandmarks Daniel@0: text(true_landmark_pos(1,i), true_landmark_pos(2,i), sprintf('L%d',i)); Daniel@0: end Daniel@0: for t=1:T Daniel@0: text(true_robot_pos(1,t), true_robot_pos(2,t), sprintf('%d',t)); Daniel@0: end Daniel@0: hold off Daniel@0: axis([-1 6 -1 6]) Daniel@0: Daniel@0: R = 1e-3*eye(2); % noise added to observation Daniel@0: Q = 1e-3*eye(2); % noise added to robot motion Daniel@0: Daniel@0: % Create data set Daniel@0: obs_noise_seq = sample_gaussian([0 0]', R, T)'; Daniel@0: obs_rel_pos = true_rel_dist + obs_noise_seq; Daniel@0: %obs_rel_pos = true_rel_dist; Daniel@0: Daniel@0: Daniel@0: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Daniel@0: % Create params for inference Daniel@0: Daniel@0: % X(t) = A X(t-1) + B U(t) + noise(Q) Daniel@0: Daniel@0: % [L1] = [1 ] * [L1] + [0] * Ut + [0 ] Daniel@0: % [L2] [ 1 ] [L2] [0] [ 0 ] Daniel@0: % [R ]t [ 1] [R ]t-1 [1] [ Q] Daniel@0: Daniel@0: % Y(t)|S(t)=s = C(s) X(t) + noise(R) Daniel@0: % Yt|St=1 = [1 0 -1] * [L1] + R Daniel@0: % [L2] Daniel@0: % [R ] Daniel@0: Daniel@0: % Create indices into block structure Daniel@0: bs = 2*ones(1, nlandmarks+1); % sizes of blocks in state space Daniel@0: robot_block = block(nlandmarks+1, bs); Daniel@0: for i=1:nlandmarks Daniel@0: landmark_block(:,i) = block(i, bs)'; Daniel@0: end Daniel@0: Xsz = 2*(nlandmarks+1); % 2 values for each landmark plus robot Daniel@0: Ysz = 2; % observe relative location Daniel@0: Usz = 2; % input is (dx, dy) Daniel@0: Daniel@0: Daniel@0: % create block-diagonal trans matrix for each switch Daniel@0: A = zeros(Xsz, Xsz); Daniel@0: for i=1:nlandmarks Daniel@0: bi = landmark_block(:,i); Daniel@0: A(bi, bi) = eye(2); Daniel@0: end Daniel@0: bi = robot_block; Daniel@0: A(bi, bi) = eye(2); Daniel@0: A = repmat(A, [1 1 nlandmarks]); % same for all switch values Daniel@0: Daniel@0: % create block-diagonal system cov Daniel@0: Daniel@0: Daniel@0: Qbig = zeros(Xsz, Xsz); Daniel@0: bi = robot_block; Daniel@0: Qbig(bi,bi) = Q; % only add noise to robot motion Daniel@0: Qbig = repmat(Qbig, [1 1 nlandmarks]); Daniel@0: Daniel@0: % create input matrix Daniel@0: B = zeros(Xsz, Usz); Daniel@0: B(robot_block,:) = eye(2); % only add input to robot position Daniel@0: B = repmat(B, [1 1 nlandmarks]); Daniel@0: Daniel@0: % create observation matrix for each value of the switch node Daniel@0: % C(:,:,i) = (0 ... I ... -I) where the I is in the i'th posn. Daniel@0: % This computes L(i) - R Daniel@0: C = zeros(Ysz, Xsz, nlandmarks); Daniel@0: for i=1:nlandmarks Daniel@0: C(:, landmark_block(:,i), i) = eye(2); Daniel@0: C(:, robot_block, i) = -eye(2); Daniel@0: end Daniel@0: Daniel@0: % create observation cov for each value of the switch node Daniel@0: Rbig = repmat(R, [1 1 nlandmarks]); Daniel@0: Daniel@0: % initial conditions Daniel@0: init_x = zeros(Xsz, 1); Daniel@0: init_v = zeros(Xsz, Xsz); Daniel@0: bi = robot_block; Daniel@0: init_x(bi) = init_robot_pos; Daniel@0: init_V(bi, bi) = 1e-5*eye(2); % very sure of robot posn Daniel@0: for i=1:nlandmarks Daniel@0: bi = landmark_block(:,i); Daniel@0: init_V(bi,bi)= 1e5*eye(2); % very uncertain of landmark psosns Daniel@0: %init_x(bi) = true_landmark_pos(:,i); Daniel@0: %init_V(bi,bi)= 1e-5*eye(2); % very sure of landmark psosns Daniel@0: end Daniel@0: Daniel@0: %%%%%%%%%%%%%%%%%%%%% Daniel@0: % Inference Daniel@0: if 1 Daniel@0: [xsmooth, Vsmooth] = kalman_smoother(obs_rel_pos, A, C, Qbig, Rbig, init_x, init_V, ... Daniel@0: 'model', true_data_assoc, 'u', ctrl_signal, 'B', B); Daniel@0: Daniel@0: est_robot_pos = xsmooth(robot_block, :); Daniel@0: est_robot_pos_cov = Vsmooth(robot_block, robot_block, :); Daniel@0: Daniel@0: for i=1:nlandmarks Daniel@0: bi = landmark_block(:,i); Daniel@0: est_landmark_pos(:,i) = xsmooth(bi, T); Daniel@0: est_landmark_pos_cov(:,:,i) = Vsmooth(bi, bi, T); Daniel@0: end Daniel@0: end Daniel@0: Daniel@0: Daniel@0: if 0 Daniel@0: figure(1); hold on Daniel@0: for i=1:nlandmarks Daniel@0: h=plotgauss2d(est_landmark_pos(:,i), est_landmark_pos_cov(:,:,i)); Daniel@0: set(h, 'color', 'r') Daniel@0: end Daniel@0: hold off Daniel@0: Daniel@0: hold on Daniel@0: for t=1:T Daniel@0: h=plotgauss2d(est_robot_pos(:,t), est_robot_pos_cov(:,:,t)); Daniel@0: set(h,'color','r') Daniel@0: h=text(est_robot_pos(1,t), est_robot_pos(2,2), sprintf('R%d', t)); Daniel@0: set(h,'color','r') Daniel@0: end Daniel@0: hold off Daniel@0: end Daniel@0: Daniel@0: Daniel@0: if 0 Daniel@0: figure(3) Daniel@0: if 0 Daniel@0: for t=1:T Daniel@0: imagesc(inv(Vsmooth(:,:,t))) Daniel@0: colorbar Daniel@0: fprintf('t=%d; press key to continue\n', t); Daniel@0: pause Daniel@0: end Daniel@0: else Daniel@0: for t=1:T Daniel@0: subplot(5,4,t) Daniel@0: imagesc(inv(Vsmooth(:,:,t))) Daniel@0: end Daniel@0: end Daniel@0: end Daniel@0: Daniel@0: Daniel@0: Daniel@0: Daniel@0: Daniel@0: %%%%%%%%%%%%%%%%% Daniel@0: % DBN inference Daniel@0: Daniel@0: if 1 Daniel@0: [bnet, Unode, Snode, Lnodes, Rnode, Ynode, Lsnode] = ... Daniel@0: mk_gmux_robot_dbn(nlandmarks, Q, R, init_x, init_V, robot_block, landmark_block); Daniel@0: engine = pearl_unrolled_dbn_inf_engine(bnet, 'max_iter', 50, 'filename', ... Daniel@0: '/home/eecs/murphyk/matlab/loopyslam.txt'); Daniel@0: else Daniel@0: [bnet, Unode, Snode, Lnodes, Rnode, Ynode] = ... Daniel@0: mk_gmux2_robot_dbn(nlandmarks, Q, R, init_x, init_V, robot_block, landmark_block); Daniel@0: engine = jtree_dbn_inf_engine(bnet); Daniel@0: end Daniel@0: Daniel@0: nnodes = bnet.nnodes_per_slice; Daniel@0: evidence = cell(nnodes, T); Daniel@0: evidence(Ynode, :) = num2cell(obs_rel_pos, 1); Daniel@0: evidence(Unode, :) = num2cell(ctrl_signal, 1); Daniel@0: evidence(Snode, :) = num2cell(true_data_assoc); Daniel@0: Daniel@0: Daniel@0: [engine, ll, niter] = enter_evidence(engine, evidence); Daniel@0: niter Daniel@0: Daniel@0: loopy_est_robot_pos = zeros(2, T); Daniel@0: for t=1:T Daniel@0: m = marginal_nodes(engine, Rnode, t); Daniel@0: loopy_est_robot_pos(:,t) = m.mu; Daniel@0: end Daniel@0: Daniel@0: for i=1:nlandmarks Daniel@0: m = marginal_nodes(engine, Lnodes(i), T); Daniel@0: loopy_est_landmark_pos(:,i) = m.mu; Daniel@0: loopy_est_landmark_pos_cov(:,:,i) = m.Sigma; Daniel@0: end Daniel@0: Daniel@0: