Daniel@0: % Compare the speeds of various inference engines on a coupled HMM Daniel@0: Daniel@0: N = 2; Daniel@0: Q = 2; Daniel@0: rand('state', 0); Daniel@0: randn('state', 0); Daniel@0: discrete = 1; Daniel@0: if discrete Daniel@0: Y = 2; % size of output alphabet Daniel@0: else Daniel@0: Y = 1; Daniel@0: end Daniel@0: coupled = 1; Daniel@0: [bnet, onodes] = mk_chmm(N, Q, Y, discrete, coupled); Daniel@0: ss = N*2; Daniel@0: Daniel@0: T = 3; Daniel@0: Daniel@0: Daniel@0: engine = {}; Daniel@0: tic; engine{end+1} = jtree_dbn_inf_engine(bnet, 'observed', onodes); toc Daniel@0: %tic; engine{end+1} = jtree_ndxSD_dbn_inf_engine(bnet, onodes); toc Daniel@0: %tic; engine{end+1} = jtree_ndxB_dbn_inf_engine(bnet, onodes); toc Daniel@0: engine{end+1} = hmm_inf_engine(bnet, onodes); Daniel@0: %engine{end+1} = dhmm_inf_engine(bnet, onodes); Daniel@0: tic; engine{end+1} = jtree_unrolled_dbn_inf_engine(bnet, T, onodes); toc Daniel@0: Daniel@0: %engine{end+1} = bk_inf_engine(bnet, 'ff', onodes); Daniel@0: %engine{end+1} = loopy_dbn_inf_engine(bnet, onodes); Daniel@0: Daniel@0: exact = [1 2 3]; Daniel@0: Daniel@0: filter = 0; Daniel@0: single = 0; Daniel@0: maximize = 0; Daniel@0: Daniel@0: [err, time, engine] = cmp_inference(bnet, onodes, engine, exact, T, filter, single, maximize); Daniel@0: %err = cmp_learning(bnet, onodes, engine, exact, T); Daniel@0: Daniel@0: