Daniel@0: function L = log_marg_prob_node(CPD, self_ev, pev, usecell) Daniel@0: % LOG_MARG_PROB_NODE Compute sum_m log P(x(i,m)| x(pi_i,m)) for node i (tabular) Daniel@0: % L = log_marg_prob_node(CPD, self_ev, pev) Daniel@0: % Daniel@0: % This differs from log_prob_node because we integrate out the parameters. Daniel@0: % self_ev(m) is the evidence on this node in case m. Daniel@0: % pev(i,m) is the evidence on the i'th parent in case m (if there are any parents). Daniel@0: % (These may also be cell arrays.) Daniel@0: Daniel@0: ncases = length(self_ev); Daniel@0: sz = CPD.sizes; Daniel@0: nparents = length(sz)-1; Daniel@0: assert(ncases == size(pev, 2)); Daniel@0: Daniel@0: if nargin < 4 Daniel@0: %usecell = 0; Daniel@0: if iscell(self_ev) Daniel@0: usecell = 1; Daniel@0: else Daniel@0: usecell = 0; Daniel@0: end Daniel@0: end Daniel@0: Daniel@0: Daniel@0: if ncases==0 Daniel@0: L = 0; Daniel@0: return; Daniel@0: elseif ncases==1 % speedup the sequential learning case Daniel@0: CPT = CPD.CPT; Daniel@0: % We assume the CPTs are already set to the mean of the posterior (due to bayes_update_params) Daniel@0: if usecell Daniel@0: x = cat(1, pev{:})'; Daniel@0: y = self_ev{1}; Daniel@0: else Daniel@0: %x = pev(:)'; Daniel@0: x = pev; Daniel@0: y = self_ev; Daniel@0: end Daniel@0: switch nparents Daniel@0: case 0, p = CPT(y); Daniel@0: case 1, p = CPT(x(1), y); Daniel@0: case 2, p = CPT(x(1), x(2), y); Daniel@0: case 3, p = CPT(x(1), x(2), x(3), y); Daniel@0: otherwise, Daniel@0: ind = subv2ind(sz, [x y]); Daniel@0: p = CPT(ind); Daniel@0: end Daniel@0: L = log(p); Daniel@0: else Daniel@0: % We ignore the CPTs here and assume the prior has not been changed Daniel@0: Daniel@0: % We arrange the data as in the following example. Daniel@0: % Let there be 2 parents and 3 cases. Let p(i,m) be parent i in case m, Daniel@0: % and y(m) be the child in case m. Then we create the data matrix Daniel@0: % Daniel@0: % p(1,1) p(1,2) p(1,3) Daniel@0: % p(2,1) p(2,2) p(2,3) Daniel@0: % y(1) y(2) y(3) Daniel@0: if usecell Daniel@0: data = [cell2num(pev); cell2num(self_ev)]; Daniel@0: else Daniel@0: data = [pev; self_ev]; Daniel@0: end Daniel@0: %S = struct(CPD); fprintf('log marg prob node %d, ps\n', S.self); disp(S.parents) Daniel@0: counts = compute_counts(data, sz); Daniel@0: L = dirichlet_score_family(counts, CPD.dirichlet); Daniel@0: end Daniel@0: Daniel@0: