Daniel@0: function CPD = learn_params(CPD, fam, data, ns, cnodes) Daniel@0: % LEARN_PARAMS Compute the maximum likelihood estimate of the params of a generic CPD given complete data Daniel@0: % CPD = learn_params(CPD, fam, data, ns, cnodes) Daniel@0: % Daniel@0: % data(i,m) is the value of node i in case m (can be cell array). Daniel@0: % We assume this node has a maximize_params method. Daniel@0: Daniel@0: %error('no longer supported') % KPM 1 Feb 03 Daniel@0: Daniel@0: if 1 Daniel@0: ncases = size(data, 2); Daniel@0: CPD = reset_ess(CPD); Daniel@0: % make a fully observed joint distribution over the family Daniel@0: fmarginal.domain = fam; Daniel@0: fmarginal.T = 1; Daniel@0: fmarginal.mu = []; Daniel@0: fmarginal.Sigma = []; Daniel@0: if ~iscell(data) Daniel@0: cases = num2cell(data); Daniel@0: else Daniel@0: cases = data; Daniel@0: end Daniel@0: hidden_bitv = zeros(1, max(fam)); Daniel@0: for m=1:ncases Daniel@0: % specify (as a bit vector) which elements in the family domain are hidden Daniel@0: hidden_bitv = zeros(1, max(fmarginal.domain)); Daniel@0: ev = cases(:,m); Daniel@0: hidden_bitv(find(isempty(evidence)))=1; Daniel@0: CPD = update_ess(CPD, fmarginal, ev, ns, cnodes, hidden_bitv); Daniel@0: end Daniel@0: CPD = maximize_params(CPD); Daniel@0: end